1E24 Material Properties Estimation for Intervertebral Disc Damage Using Finite Element Method

Author(s):  
Keisuke Sasagawa ◽  
Masafumi Oda ◽  
Keiko Katsuyama ◽  
Kazuhiro Hasegawa ◽  
Toshiaki Hara ◽  
...  
Author(s):  
Samir Zahaf ◽  
Said Kebdani

Orthopedic fixation devices are widely used in treatment of spinal diseases. It is expected that application of dynamic stabilization confers valuable movement possibility besides its main role of load bearing. Comparative investigation between pedicle screw model rigid fixation and (B Dyne, Elaspine, Bioflex, Coflexe rivet) models dynamic fixation systems may elucidate the efficacy of each design. The goal of the present study is to evaluate the efficacy of five fixation systems mounted on L4-L5 motion segment. In this numerical study, a 3D precious model of L4, L5 and their intervertebral disc has been employed based on CT images. five fixation devices have been also implanted internally to the motion segment. Finite element method was used to evaluate stress distribution in the disc and determine the overall displacement of the segment as a measure of movement possibility. The results show that The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment (L4-L5), on the other hand, Maximum stress in the disc has been observed in dynamic systems but within the safe range. The greater movement of the motion segment has been also appeared in dynamic fixations. Existence of the fixation systems reduced the stress on the intervertebral disc which might be exerted in intact cases. Use of the fixation devices can considerably reduce the load on the discs and prepare conditions for healing of the injured ones. Furthermore, dynamic modes of fixation confer possibility of movement to the motion segments in order to facilitate the spinal activities.


2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


Author(s):  
Hiroshi Utsunomiya ◽  
Michael P. F. Sutcliffe ◽  
Hugh R. Shercliff ◽  
Pete S. Bate ◽  
Dan B. Miller

Roughening of the matt surface of pack rolled aluminium foil has been modelled. The model is based on the finite element method using isotropic plasticity. A distribution in material properties has been used to simulate the distribution of orientations through the material. The predictions of roughness show good quantitative agreement with the experiments.


2021 ◽  
Author(s):  
Erika Ronchin ◽  
Raffaele Castaldo ◽  
Susi Pepe ◽  
Pietro Tizzani ◽  
Giuseppe Solaro ◽  
...  

<p>The detailed spatial and temporal information of surface deformation detected during volcanic unrest by InSAR images suggests a degree of complexity of volcanic systems (e.g., source geometries and distribution of material properties) that cannot be correctly represented by simple models of a pressure source embedded in an elastic, homogeneous, isotropic half-space.</p><p>The inversion of deformation data, performed for the characterization of the source of deformation, is based on the model we choose to represent the volcanic system. Therefore the quality of the chosen model influences the source size and its temporal changes estimated through the inversion, and thus their interpretation. In fact, our assumptions about geometries and/or magma and rock properties affect the estimations of changes in magma volumes and reservoir pressure. To obtain a more reliable interpretation of surface signals, it is thus paramount to have more realistic models, where the distribution of material properties is constrained by multiple data sets, with greater flexibility in the definition of sources in space and time.</p><p>Assuming we could invert InSAR data with models that can deal with a complex and arbitrarily shaped deformation source, how unique could this solution be? How much could we say about the evolution of the deformation source over time? Furthermore, how much information about the spatial complexity of the source and its evolution in space and time would be missed?</p><p>To answer these questions, we characterize the deformation source from the inversion of InSAR data based on a finite element method (FEM) forward model without an a-priori source geometry. The deformation source is bound by estimating the strength of an amorphous cluster of deformation sources distributed over a grid. This uses the principle of superposition already applied to point or cuboid volume elements, embedded in a homogeneous half-space. Also, the numerical model integrates the cluster-source with a heterogeneous distribution of material properties and the topography.</p><p>In our study, we quantify the ambiguity in the estimation of arbitrary geometries of sources of deformation composed by clusters of Finite Element Method unit sources distributed over a grid. The regularized least-squares solutions of the steady-state PDEs inverse model are obtained using a COMSOL Multiphysics-based routine. Through the inversion of the InSAR time series of the unrest at Uturuncu volcano (Bolivia), we quantify the ability of the employed cluster-source approach to identify the changes of deformation sources in time. </p><p>This research is financed by an individual fellowship of the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 793811.</p>


2021 ◽  
Vol 26 (3-4) ◽  
pp. 255-264
Author(s):  
E.Y. Chugunov ◽  
◽  
A.I. Pogalov ◽  
S.P. Timoshenkov ◽  
◽  
...  

In the context of increasing the electronic components integration level, growing functionality and packaging density, as well as reducing the electronics weight and size, an integrated approach to engineering calculations of parts and assemblies of modern functionally and technically complex microelectronic products is required. Of particular importance are engineering calculations and structural modeling using computer-aided engineering systems, and also assessment of structural, technological and operational factors’ impact on the products reliability and performance. This work presents an approach to engineering calculations and microelectronic products modeling based on the finite-element method providing a comprehensive account of various factors (material properties, external loading, temperature fields, and other parameters) impact on the stress-strain state, mechanical strength, thermal condition, and other characteristics of products. On the example of parts and assemblies of products of microelectronic technology, the approximation of structures was shown and computer finite-element models were developed to study various structural and technological options of products and the effects on them. Engineering calculations and modeling of parts and assemblies were performed, taking into account the impact of material properties, design parameters and external influences on the products’ characteristics. Scientific and technical recommendations for structure optimization and design and technology solutions ensuring the products resistance to diverse effects were developed. It has been shown that an integrated approach to engineering calculations and microelectronic products modeling based on the finite-element method provides for the determination of optimal solutions taking into account structural, technological, and operational factors and allows the development of products with high tactical, technical and operational characteristics.


Sign in / Sign up

Export Citation Format

Share Document