Prediction of Material Properties of Ceramic Composite Material by Porous Structure and Porosity Using the Finite Element Method

Author(s):  
Dong Gyu Lee ◽  
Soo-Hyun Kim ◽  
Seyoung Kim ◽  
Ji Haeng Yu ◽  
Seong Wook Cho
2015 ◽  
Vol 1096 ◽  
pp. 417-421
Author(s):  
Pei Luan Li ◽  
Zi Qian Huang

By the use of finite element method, this paper predicts the effects of the shapes of reinforcements with different ductility (Co) on the effective elastic response for WC-Co cemented carbide. This paper conducts a comparative study on the material properties obtained through theoretical model, numerical simulation and experimental observations. Simulation results indicate that the finite element method is more sophisticated than the theoretical prediction.


Author(s):  
Hiroshi Utsunomiya ◽  
Michael P. F. Sutcliffe ◽  
Hugh R. Shercliff ◽  
Pete S. Bate ◽  
Dan B. Miller

Roughening of the matt surface of pack rolled aluminium foil has been modelled. The model is based on the finite element method using isotropic plasticity. A distribution in material properties has been used to simulate the distribution of orientations through the material. The predictions of roughness show good quantitative agreement with the experiments.


2021 ◽  
Vol 26 (3-4) ◽  
pp. 255-264
Author(s):  
E.Y. Chugunov ◽  
◽  
A.I. Pogalov ◽  
S.P. Timoshenkov ◽  
◽  
...  

In the context of increasing the electronic components integration level, growing functionality and packaging density, as well as reducing the electronics weight and size, an integrated approach to engineering calculations of parts and assemblies of modern functionally and technically complex microelectronic products is required. Of particular importance are engineering calculations and structural modeling using computer-aided engineering systems, and also assessment of structural, technological and operational factors’ impact on the products reliability and performance. This work presents an approach to engineering calculations and microelectronic products modeling based on the finite-element method providing a comprehensive account of various factors (material properties, external loading, temperature fields, and other parameters) impact on the stress-strain state, mechanical strength, thermal condition, and other characteristics of products. On the example of parts and assemblies of products of microelectronic technology, the approximation of structures was shown and computer finite-element models were developed to study various structural and technological options of products and the effects on them. Engineering calculations and modeling of parts and assemblies were performed, taking into account the impact of material properties, design parameters and external influences on the products’ characteristics. Scientific and technical recommendations for structure optimization and design and technology solutions ensuring the products resistance to diverse effects were developed. It has been shown that an integrated approach to engineering calculations and microelectronic products modeling based on the finite-element method provides for the determination of optimal solutions taking into account structural, technological, and operational factors and allows the development of products with high tactical, technical and operational characteristics.


2013 ◽  
Vol 60 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Henryk Olszewski ◽  
Wiktoria Wojnicz ◽  
Edmund Wittbrodt

Abstract An original method of skeletal system modelling is presented in detail. Using DICOM images obtained from CT and PET tests, shell models of nine bones were created (humerus, radius, ulna, scapula, clavicle, femur, tibia, fibula, pelvis). Two methods of bone behaviour are also proposed, the first method treating the bone as a solid structure and the second method treating the bone as a complex porous structure. The behaviour of model parts is numerically examined by using the finite element method


2002 ◽  
Vol 13 (03) ◽  
pp. 405-417
Author(s):  
ALI MOOSAVI ◽  
PERTTI SARKOMAA

We study the resonant behavior of a system consisting of a square array of multi-coated cylinders by calculating the effective dielectric constant of the system. The results were examined numerically using the finite element method.


1999 ◽  
Vol 594 ◽  
Author(s):  
A. Wikström ◽  
P. Gudmundson ◽  
S. Suresh

AbstractIt is well known that curvature measurements may be used to obtain volume averaged stresses in thin continuous films and unpassivated lines without knowledge of the material properties of the film or lines. However, recently a method was presented which makes it possible to use curvature measurements also for the determination of volume averaged stresses in passivated lines. Since the problem is statically indeterminate the method requires knowledge of the material properties of the lines and passivation. The sensitivity of the method to uncertainties in material properties and curvature data is here investigated by utilizing the finite element method for anisotropic Cu or Al lines embedded in SiO2 passivation. Furthermore, the method is extended to cover the case of different stress-free temperatures for the lines and passivation respectively.


Sign in / Sign up

Export Citation Format

Share Document