202 Application of an enriched FEM to ID-dissimilar material joints : Application in 2-real singularities model

2011 ◽  
Vol 2011.24 (0) ◽  
pp. 20-22
Author(s):  
Chonlada LUANGARPA ◽  
Hideo KOGUCHI
Author(s):  
S. K. Lee ◽  
S. W. Lee ◽  
Y. R. Kim ◽  
J. H. Park ◽  
J. H. Kim

2018 ◽  
Vol 87 (1) ◽  
pp. 28-32
Author(s):  
Ryoji OHASHI
Keyword(s):  

2021 ◽  
Vol 68 ◽  
pp. 940-950
Author(s):  
Sendong Ren ◽  
Yunwu Ma ◽  
Ninshu Ma ◽  
Shuhei Saeki ◽  
Yoshiaki Iwamoto

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 775
Author(s):  
Hiroki Kamai ◽  
Yan Xu

Nanofluidics is supposed to take advantage of a variety of new physical phenomena and unusual effects at nanoscales typically below 100 nm. However, the current chip-based nanofluidic applications are mostly based on the use of nanochannels with linewidths above 100 nm, due to the restricted ability of the efficient fabrication of nanochannels with narrow linewidths in glass substrates. In this study, we established the fabrication of nanofluidic structures in glass substrates with narrow linewidths of several tens of nanometers by optimizing a nanofabrication process composed of electron-beam lithography and plasma dry etching. Using the optimized process, we achieved the efficient fabrication of fine glass nanochannels with sub-40 nm linewidths, uniform lateral features, and smooth morphologies, in an accurate and precise way. Furthermore, the use of the process allowed the integration of similar or dissimilar material-based ultrasmall nanocomponents in the ultranarrow nanochannels, including arrays of pockets with volumes as less as 42 zeptoliters (zL, 10−21 L) and well-defined gold nanogaps as narrow as 19 nm. We believe that the established nanofabrication process will be very useful for expanding fundamental research and in further improving the applications of nanofluidic devices.


2007 ◽  
Vol 39 (3) ◽  
pp. 652-661 ◽  
Author(s):  
Alexandre Mathieu ◽  
Rajashekar Shabadi ◽  
Alexis Deschamps ◽  
Michel Suery ◽  
Simone Matteï ◽  
...  

2016 ◽  
Vol 853 ◽  
pp. 366-371
Author(s):  
Daniele Barbera ◽  
Hao Feng Chen ◽  
Ying Hua Liu

As the energy demand increases the power industry has to enhance both efficiency and environmental sustainability of power plants by increasing the operating temperature. The accurate creep fatigue life assessment is important for the safe operation and design of current and future power plant stations. This paper proposes a practical creep fatigue life assessment case of study by the Linear Matching Method (LMM) framework. The LMM for extended Direct Steady Cycle Analysis (eDSCA) has been adopted to calculate the creep fatigue responses due to the cyclic loading under high temperature conditions. A pipe intersection with dissimilar material joint, subjected to high cycling temperature and constant pressure steam, is used as an example. The closed end condition is considered at both ends of main and branch pipes. The impact of the material mismatch, transitional thermal load, and creep dwell on the failure mechanism and location within the intersection is investigated. All the results demonstrate the capability of the method, and how a direct method is able to support engineers in the assessment and design of high temperature component in a complex loading scenario.


Sign in / Sign up

Export Citation Format

Share Document