045 First Principles Calculation of Dopant Impact on Formation Energy of Intrinsic Point Defects in Single Crystal Silicon

2015 ◽  
Vol 2015.28 (0) ◽  
pp. _045-1_-_045-3_
Author(s):  
Koji KOBAYASHI ◽  
Syunta YAMAOKA ◽  
Koji SUEOKA
Crystals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 48 ◽  
Author(s):  
Qing Peng ◽  
Nanjun Chen ◽  
Danhong Huang ◽  
Eric Heller ◽  
David Cardimona ◽  
...  

Point defects are inevitable, at least due to thermodynamics, and essential for engineering semiconductors. Herein, we investigate the formation and electronic structures of fifteen different kinds of intrinsic point defects of zinc blende indium arsenide (zb-InAs ) using first-principles calculations. For As-rich environment, substitutional point defects are the primary intrinsic point defects in zb-InAs until the n-type doping region with Fermi level above 0.32 eV is reached, where the dominant intrinsic point defects are changed to In vacancies. For In-rich environment, In tetrahedral interstitial has the lowest formation energy till n-type doped region with Fermi level 0.24 eV where substitutional point defects In A s take over. The dumbbell interstitials prefer < 110 > configurations. For tetrahedral interstitials, In atoms prefer 4-As tetrahedral site for both As-rich and In-rich environments until the Fermi level goes above 0.26 eV in n-type doped region, where In atoms acquire the same formation energy at both tetrahedral sites and the same charge state. This implies a fast diffusion along the t − T − t path among the tetrahedral sites for In atoms. The In vacancies V I n decrease quickly and monotonically with increasing Fermi level and has a q = − 3 e charge state at the same time. The most popular vacancy-type defect is V I n in an As-rich environment, but switches to V A s in an In-rich environment at light p-doped region when Fermi level below 0.2 eV. This study sheds light on the relative stabilities of these intrinsic point defects, their concentrations and possible diffusions, which is expected useful in defect-engineering zb-InAs based semiconductors, as well as the material design for radiation-tolerant electronics.


2015 ◽  
Vol 242 ◽  
pp. 271-276
Author(s):  
Sho Shirasawa ◽  
Koji Sueoka

Fe, Ni and Cu atoms diffuse very quickly in Si and are the main targets for metal gettering. W, Hf, and Mo atoms, for example, which diffuse very slowly in Si have also recently become gettering targets in addition to these metals. Therefore, proximity gettering techniques by using ion implantation are being considered. Not only implanted elements but intrinsic point defects exist and form several complexes after the heat treatment for Si crystal recovery. This research systematically investigated the binding energy of twelve important metals (Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Hf, Ta, and W) with implanted dopants (B, C, P, and As) and their complexes with intrinsic point defects (vacancies (Vs) and self-interstitials (Is)) by using first principles calculation. These data should be useful in the design of proximity gettering in LSI manufacturing processes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Zhao ◽  
Zheng Zhang ◽  
Yang Li ◽  
Xiaoping Ouyang

The different point defects formed by two hydrogen atoms or two helium atoms in tungsten were investigated through first-principles calculation. The energetically favorable site for a hydrogen atom is tetrahedral interstitial site while substitutional site is the most preferred site for a helium atom. The formation energies of two hydrogen or helium atoms are determined by their positions, and they are not simply 2 times the formation energy of a single hydrogen or helium atom’s defect. After relaxation, two adjacent hydrogen atoms are away from each other while helium atoms are close to each other. The reasons for the interaction between two hydrogen or helium atoms are also discussed.


2010 ◽  
Vol 108 (11) ◽  
pp. 113505 ◽  
Author(s):  
Chan-Yeup Chung ◽  
Ritsuko Yaokawa ◽  
Hiroshi Mizuseki ◽  
Satoshi Uda ◽  
Yoshiyuki Kawazoe

RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14422-14431 ◽  
Author(s):  
Chunmei Tang ◽  
Zhicheng Huang ◽  
Jun Pei ◽  
Bo-Ping Zhang ◽  
Peng-Peng Shang ◽  
...  

This study prepared Bi2Te3 single crystals and investigated the thermoelectric properties of Bi2Te3 based on the electronic structure and formation energy of point defects which are calculated by density functional theory.


Sign in / Sign up

Export Citation Format

Share Document