208 Crack Propagation under Low Cycle Fatigue at High Temperature of Stainless Steel for Exhaust Manifold

2005 ◽  
Vol 2005.43 (0) ◽  
pp. 57-58
Author(s):  
Kazuo OGAWA ◽  
Akira TANOUE
1981 ◽  
Vol 16 (5) ◽  
pp. 417-419
Author(s):  
V. S. Ivanova ◽  
Ya. Gintsler ◽  
L. I. Maslov

Author(s):  
Cristiana Delprete ◽  
Raffaella Sesana

The paper presents and discusses a low-cycle fatigue life prediction energy-based model. The model was applied to a commercial cast iron automotive exhaust manifold. The total expended energy until fracture proposed by the Skelton model was modified by means of two coefficients which take into account of the effects of mean stress and/or mean strain, and the presence of high temperature. The model was calibrated by means of experimental tests developed on Fe–2.4C–4.6Si–0.7Mo–1.2Cr high-temperature-resistant ductile cast iron. The thermostructural transient analysis was developed on a finite element model built to overtake confidentiality industrial restrictions. In addition to the commercial exhaust manifold, the finite element model considers the bolts, the gasket, and a cylinder head simulacrum to consider the corresponding thermal and mechanical boundary conditions. The life assessment performance of the energy-based model with respect the cast iron specimens was compared with the corresponding Basquin–Manson–Coffin and Skelton models. The model prediction fits the experimental data with a good agreement, which is comparable with both the literature models and it shows a better fitting at high temperature. The life estimations computed with respect the exhaust manifold finite element model were compared with different multiaxial literature life models and literature data to evaluate the life prediction capability of the proposed energy-based model.


2011 ◽  
Vol 361-363 ◽  
pp. 1422-1425
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The crack propagation law of 2.25Cr-1Mo steel with notched cylinder was researched under high temperature low cycle fatigue. The crack propagation life was viewed by fatigue experiment and the equivalent stress-strain on the crack tip was calculated by the ANSYS. The equivalent J-integral range which was computed by equivalent elastic and plastic strain ranges were employed to denote the fatigue crack propagation rate. The results showed that crack propagation law of this material under complex stress state can be characterized by equivalent J-integral ranges and the relation between da/dN and ΔJf is not influenced by the type of notch and the load strain range.


Sign in / Sign up

Export Citation Format

Share Document