scholarly journals 108 Effect of Material Properties of a Functionally Graded Piezoelectric on Thermal Stresses

2013 ◽  
Vol 2013.51 (0) ◽  
pp. _108-1_-_108-2_
Author(s):  
Kazuki KAMEI ◽  
Fumihiro ASHIDA ◽  
Sei-ichiro SAKATA ◽  
Takuya MORIMOTO
2012 ◽  
Vol 166-169 ◽  
pp. 824-827 ◽  
Author(s):  
Y Z Yang

This paper presents symplectic method for the derivation of exact solutions of functionally graded piezoelectric beam with the material properties varying exponentially both along the axial and transverse coordinates. In the approach, the related equations and formulas are developed in terms of dual equations, which can be solved by variables separation and symplectic expansion in Hamiltonian system. To verify advantages of the method, numerical examples of bi-directional functionally piezoelectric beam are discussed.


Author(s):  
Vahid Movahedfar ◽  
Mohammad M Kheirikhah ◽  
Younes Mohammadi ◽  
Farzad Ebrahimi

Based on modified strain gradient theory, nonlinear vibration analysis of a functionally graded piezoelectric doubly curved microshell in thermal environment has been performed in this research. Three scale parameters have been included in the modeling of thin doubly curved microshell in order to capture micro-size effects. Graded material properties between the top and bottom surfaces of functionally graded piezoelectric doubly curved microshell have been considered via incorporating power-law model. It is also assumed that the microshell is exposed to a temperature field of uniform type and the material properties are temperature-dependent. By analytically solving the governing equations based on the harmonic balance method, the closed form of nonlinear vibration frequency has been achieved. Obtained results indicate the relevance of calculated frequencies to three scale parameters, material gradation, electrical voltage, curvature radius, and temperature changes.


2013 ◽  
Vol 307 ◽  
pp. 364-367 ◽  
Author(s):  
Ali Ozturk ◽  
Müfit Gülgeç

This paper presents analytical solutions of the thermal stresses in a functionally graded solid cylinder with fixed ends in elastic region. These thermal stresses are due to the uniform heat generation inside the cylinder. Material properties of the functionally graded (FG) cylinder vary radially according to a parabolic form. The material properties are assumed to be independent of the temperature which are yield strength, elasticity modulus, thermal conduction coefficient, thermal expansion coefficient and Poisson’s ratio. The solutions for the thermal stresses are valid for both homogeneous and functionally graded materials.


Author(s):  
JEONG WOO SHIN ◽  
YOUNG-SHIN LEE

The dynamic propagation of a crack in a functionally graded piezoelectric material (FGPM) interface layer between two dissimilar piezoelectric layers under anti-plane shear is analyzed using the integral transform approaches. The properties of the FGPM layers vary continuously along the thickness. FGPM layer and the two homogeneous piezoelectric layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM. Followings are helpful to increase of the resistance of the crack propagation of the FGPM interface layer: (a) certain direction and magnitude of the electric loading; (b) increase of the thickness of the FGPM interface layer; (c) increase of the thickness of the homogeneous piezoelectric layer which has larger material properties than those of the crack plane in the FGPM interface layer. The DERR always increases with the increase of crack moving velocity and the gradient of the material properties.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

In this paper, the general solution of steady-state 2D nonaxisymmetric mechanical and thermal stresses and electrical and mechanical displacements of a hollow thick cylinder made of fluid-saturated functionally graded porous piezoelectric material (FGPPM) is presented. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and the nonhomogenous system of partial differential Navier equations, using the complex Fourier series and the power law functions method. The material properties, except Poisson's ratio, are assumed to depend on the radial variable and they are expressed as power law functions along the radial direction.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

The general solution of steady-state on one-dimensional Axisymmetric mechanical and thermal stresses for a hollow thick made of cylinder Functionally Graded porous material is developed. Temperature, as functions of the radial direction with general thermal and mechanical boundary-conditions on the inside and outside surfaces. A standard method is used to solve a nonhomogenous system of partial differential Navier equations with nonconstant coefficients, using complex Fourier series, rather power functions method and solve the heat conduction. The material properties, except poisson's ratio, are assumed to depend on the variable , and they are expressed as power functions of .


Sign in / Sign up

Export Citation Format

Share Document