1103 Numerical Analysis on Relation between Needle Eccentricity and Internal Flow Characteristics in a VCO Diesel Injector

2014 ◽  
Vol 2014.52 (0) ◽  
pp. _1103-1_-_1103-2_
Author(s):  
Tomofumi YAMANE ◽  
Takahiro SUMI ◽  
Katsuyuki OHSAWA ◽  
Tetsuya ODA
2013 ◽  
Vol 23 (2) ◽  
pp. 97-118 ◽  
Author(s):  
Joaquin De la Morena ◽  
Kshitij Neroorkar ◽  
Alejandro H. Plazas ◽  
Richard C. Peterson ◽  
David P. Schmidt

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


2011 ◽  
Vol 95 (2) ◽  
pp. 494-501 ◽  
Author(s):  
Brooks D. Rabideau ◽  
Pascal Moucheront ◽  
François Bertrand ◽  
Stéphane Rodts ◽  
Yannick Mélinge ◽  
...  

2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Tetsuaki Takeda

When a depressurization accident of a very-high-temperature reactor (VHTR) occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Experiment and numerical analysis using a three-dimensional (3D) computational fluid dynamics code have been carried out to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. One sidewall of the high-temperature side vertical passage is heated, and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. The result obtained from the 3D numerical analysis was in agreement with the experimental result quantitatively. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


2012 ◽  
Vol 466-467 ◽  
pp. 1237-1241
Author(s):  
Yan Hua Wang ◽  
Shi Chun Yang ◽  
Yun Qing Li

To achieve transient flow characteristics at exit of nozzle orifice on gasoline direct injection engine, two phase Euler-Euler schemes was used to simulate the internal flow of the swirl nozzle. Different flow characteristics were calculated in the simulation. Different kinds of nozzle configuration were studied. Cavitaion and swirl flow occured in the nozzles. Injection hole configuration matters more than area variation of swirl tangential slot to discharge coefficient of the studied nozzle. Discharge coefficient changes a little along the injection hole length. The area of the swirl tangrntial slot plays an important throttling action in nozzle internal flow. Smaller area of swirl tangential slot generates larger degree cavitation but smaller mean injection velocity. Turbulence kinetic energy changes with the time of cavitation and swirl field occurring and the nozzle configuration. Before the appearance of cavitation, smaller inclination angle of orifice can generate more turbulence kinetic energy. After that moment, turbulence kinetic energy varies with different configuration. Along injection hole length, turbulence kinetic energy obviously varies. These flow characteristics affect primary atomization and will be as input for next spray simulation. They are also applied to design reference for injection nozzle.


2003 ◽  
Author(s):  
Duk-Sang Kim ◽  
Yeun-Jun Yoo ◽  
Yong-Seok Cho ◽  
In-Yong Ohm

Sign in / Sign up

Export Citation Format

Share Document