NUMERICAL ANALYSIS OF THE INFLUENCE OF DIESEL NOZZLE DESIGN ON INTERNAL FLOW CHARACTERISTICS FOR 2-VALVE DIESEL ENGINE APPLICATION

2013 ◽  
Vol 23 (2) ◽  
pp. 97-118 ◽  
Author(s):  
Joaquin De la Morena ◽  
Kshitij Neroorkar ◽  
Alejandro H. Plazas ◽  
Richard C. Peterson ◽  
David P. Schmidt
2012 ◽  
Vol 246-247 ◽  
pp. 127-130
Author(s):  
Bing Li ◽  
Xue Song Hu ◽  
Xiao Feng Cao ◽  
Gui Qi Jia ◽  
Fang Xi Xie ◽  
...  

The fuel flow characteristics in diesel nozzle orifice are key factors to the atomization of fuel near the nozzle orifice. In the paper, two-phase flow model is used to simulate the complex flow features in nozzle orifice, and to study the influences of the relative position of nozzles orifice axis and nozzle axis, and inclination angle of nozzle hole on the internal flow feature.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 239
Author(s):  
Kyeong-Ju Kong

It is necessary to analyze the intake/exhaust gas flow of a diesel engine when turbocharger matching and when installing emission control devices such as exhaust gas recirculation (EGR), selective catalytic reduction (SCR), and scrubbers. Analyzing the intake/exhaust gas flow using a 3D approach can use various analytical models, but it requires a significant amount of time to perform the computation. An approach that combines 1D and 3D is a fast numerical analysis method that can utilize the analysis models of the 3D approach and obtain accurate calculation results. In this study, the flow characteristics of the exhaust gas were analyzed using a 1D–3D coupling algorithm to analyze the unsteady gas flow of a diesel engine, and whether the 1D–3D approach was suitable for analyzing exhaust systems was evaluated. The accuracy of the numerical analysis results was verified by comparison with the experimental results, and the flow characteristics of various shapes of the exhaust system of a diesel engine could be analyzed. Numerical analysis using the 1D–3D approach was able to be computed about 300 times faster than the 3D approach, and it was a method that could be used for research focused on the exhaust system. In addition, since it could quickly and accurately calculate intake/exhaust gas flow, it was expected to be used as a numerical analysis method suitable for analyzing the interaction of diesel engines with emission control devices and turbochargers.


Author(s):  
Gyeung Ho Choi ◽  
Tae Yun Kwon ◽  
Ju Hee Yun ◽  
Yon Jong Chung ◽  
Chang Uk Ha ◽  
...  

In a swirl chamber type diesel engine, a strong swirl is produced inside the swirl chamber during the compression stroke. By spraying the fuel into this chamber and thus forming a good mixture, the engine can obtain excellent combustion even at high speeds. Therefore, swirl chamber type diesel engines are favorable for high-speed operations, and because they can produce high power from a small size, they are used often for small, high-speed diesel engine applications. In order to simultaneously realize a reduction in harmful emissions and improvement in fuel consumption of the swirl chamber type diesel engine, reduction of the mixture formation period and complete combustion must be pursued; an optimum combustion chamber to achieve these tasks must first be designed. In this experiment, the effects of the area and the angle of the passage hole, which are the primary design factors of the swirl chamber type diesel engine, on the engine’s turbulent flow will be investigated. Using the commercial numerical analysis program the passage hole area and angle will be varied to analyze the intake and compression stages.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kyll Schomberg ◽  
John Olsen ◽  
Graham Doig

An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.


Sign in / Sign up

Export Citation Format

Share Document