Analysis of stresses in elastic body due to molecular interactions with periodic distribution

2018 ◽  
Vol 2018.56 (0) ◽  
pp. 309
Author(s):  
Toshiki OTANI ◽  
Satoru MAEGAWA ◽  
Hiroshige MATSUOKA ◽  
Shigehisa FUKUI
Author(s):  
Hiroshige Matsuoka ◽  
Toshiki Otani ◽  
Shigehisa Fukui

A method to calculate the stress distributions in the elastic body caused by the molecular interactions has been established. The stress distribution was calculated based on the Mindlin’s solution considering the one-dimensional periodic material distribution. The calculation results for a distribution of two materials were presented. The basic characteristics of the stress distribution in the elastic body were quantitatively clarified.


2020 ◽  
Vol 2020.58 (0) ◽  
pp. 12a2
Author(s):  
Takahiro YAMAMOTO ◽  
Toshiki OTANI ◽  
Takumi ISHIKAWA ◽  
Hiroshige MATSUOKA

Author(s):  
Toshiki OTANI ◽  
Satoru MAEGAWA ◽  
Shigehisa FUKUI ◽  
Hiroshige MATSUOKA

Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


2020 ◽  
Author(s):  
Kseniya A. Mariewskaya ◽  
Denis Larkin ◽  
Yuri Samoilichenko ◽  
Vladimir Korshun ◽  
Alex Ustinov

Molecular fluorescence is a phenomenon that is usually observed in condensed phase. It is strongly affected by molecular interactions. The study of fluorescence spectra in the gas phase can provide a nearly-ideal model for the evaluation of intrinsic properties of the fluorophores. Unfortunately, most conventional fluorophores are not volatile enough to allow study of their fluorescence in the gas phase. Here we report very bright gas phase fluorescence of simple BODIPY dyes that can be readily observed at atmospheric pressure using conventional fluorescence instrumentation. To our knowledge, this is the first example of visible range gas phase fluorescence at near ambient conditions. Evaporation of the dye in vacuum allowed us to demonstrate organic molecular electroluminescence in gas discharge excited by electric field produced by a Tesla coil.


Sign in / Sign up

Export Citation Format

Share Document