Heat utilization system using vacuum insulation container with porous silica powder and phase change materials / chemical heat storage materials

2020 ◽  
Vol 2020.30 (0) ◽  
pp. 404
Author(s):  
Shun Otsuka ◽  
Hideaki Matsubara ◽  
Masanobu Kamitakahara
Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 241
Author(s):  
Raul-Augustin Mitran ◽  
Simona Ioniţǎ ◽  
Daniel Lincu ◽  
Daniela Berger ◽  
Cristian Matei

Phase change materials (PCMs) can store thermal energy as latent heat through phase transitions. PCMs using the solid-liquid phase transition offer high 100–300 J g−1 enthalpy at constant temperature. However, pure compounds suffer from leakage, incongruent melting and crystallization, phase separation, and supercooling, which limit their heat storage capacity and reliability during multiple heating-cooling cycles. An appropriate approach to mitigating these drawbacks is the construction of composites as shape-stabilized phase change materials which retain their macroscopic solid shape even at temperatures above the melting point of the active heat storage compound. Shape-stabilized materials can be obtained by PCMs impregnation into porous matrices. Porous silica nanomaterials are promising matrices due to their high porosity and adsorption capacity, chemical and thermal stability and possibility of changing their structure through chemical synthesis. This review offers a first in-depth look at the various methods for obtaining composite PCMs using porous silica nanomaterials, their properties, and applications. The synthesis and properties of porous silica composites are presented based on the main classes of compounds which can act as heat storage materials (paraffins, fatty acids, polymers, small organic molecules, hydrated salts, molten salts and metals). The physico-chemical phenomena arising from the nanoconfinement of phase change materials into the silica pores are discussed from both theoretical and practical standpoints. The lessons learned so far in designing efficient composite PCMs using porous silica matrices are presented, as well as the future perspectives on improving the heat storage materials.


2018 ◽  
Vol 32 ◽  
pp. 01001
Author(s):  
Abdullahi Ahmed ◽  
Monica Mateo-Garcia ◽  
Danny McGough ◽  
Kassim Caratella ◽  
Zafer Ure

Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.


2015 ◽  
Vol 806 ◽  
pp. 203-213
Author(s):  
Tina Kegl

This paper deals with an optimal design solar tower power plant. Special attention is focused on the central receiver system and heat storage materials. In order to get an effective power plant, a simple mathematical model to calculate the solar energy, concentrated on the solar receiver during one year, is developed. The model can predict the delivered energy in dependence on the arrangement of the heliostats and the height of the solar receiver. By using an optimizer, a plant of 5 MW power is optimized in order to produce a maximum of electrical energy during the year on the prescribed area. On the basis of analysis of heat storage materials, KNO3, acting as phase change material (PCM), is shown to be suitable for heat storage from the thermal, physical, kinetic, chemical, and economic point of view.


2011 ◽  
Vol 250-253 ◽  
pp. 3541-3544
Author(s):  
Gang Chen ◽  
Li Xia Wan

The types and characteristics of phase change energy storage materials were introduced ,and the current research of thermal storage with PCMS is summarized in the paper. Meanwhile the influence of stability, corrosion, phase segregation, sub-cooling, and encapsulation of phase change materials on heat storage were presented also. The applications and prospects of PCMS used in many fields were summarized in the end of the paper.


2016 ◽  
Vol 162 ◽  
pp. 31-39 ◽  
Author(s):  
E. Mastronardo ◽  
L. Bonaccorsi ◽  
Y. Kato ◽  
E. Piperopoulos ◽  
C. Milone

2012 ◽  
Vol 479-481 ◽  
pp. 578-585
Author(s):  
Juan Zhao ◽  
Jun Lu ◽  
Peng Chen ◽  
Ya Qin Zhang ◽  
Liao Liao

the experiments set up a roof model with a solar energy heat storage ventilation. According to the actual demands of experiments, through an economic analysis it results the preliminary investment of the solar energy storage ventilationthe system is between 307~367Yuan/m2 by calculating a energy balance in some way and choosing some type of heat storage phase change materials with a suitable quantity to fit for the model.


2020 ◽  
Vol 152 ◽  
pp. 02008
Author(s):  
Felix Ishola ◽  
Philip Babalola ◽  
Obafemi Olatunji ◽  
Iyanuoluwa Ogunrinola ◽  
Olayinka Ayo ◽  
...  

Radiation from the sun continually generates enormous solar energy reaching the atmosphere and then radiates back into the outer space over a while. The energy source is considered to be potential renewable thermal energies if effectively harnessed and stored. Thermal energy storage could be in either cold or heat form for later use for either cooling and heating purposes respectively; it can also be utilized for electricity production. The development of highly efficient and cost-effective heat storage materials has been an emerging school of thought for researches into smart methods of heat storage. The authors briefly review the state-of-art carbon-based composite phase change materials (PCM) that have been employed in applications that are related to thermal storage. Various types of recently developed carbon composites with improved thermal storage properties have been succinctly discussed. The technological implications of employing the identified materials in the thermal storage applications were also highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document