0516 Numerical Analysis on High-Temperature Premixed Flames:Effects of Unburned-Gas Temperature and Lewis Number on Intrinsic Instability

2012 ◽  
Vol 2012.49 (0) ◽  
pp. 051601-051602
Author(s):  
Takuya OSHIMA ◽  
Hideaki KOBAYASHI ◽  
Satoshi KADOWAKI
2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Tetsuaki Takeda

When a depressurization accident of a very-high-temperature reactor (VHTR) occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Experiment and numerical analysis using a three-dimensional (3D) computational fluid dynamics code have been carried out to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. One sidewall of the high-temperature side vertical passage is heated, and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. The result obtained from the 3D numerical analysis was in agreement with the experimental result quantitatively. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


Author(s):  
Lewen Bi ◽  
Lanzhu Zhang

Bolted flange joints are widely used in petroleum, chemical, nuclear and power industries, etc. With more and more devices are used at high temperature, the performance of flange connections becomes more complex, especially with creep of different components in flange connection. At elevated temperature, with the loss of bolt force and gasket force due to creep, the joints are prone to leak. Based on this, this paper analyzed the relaxation of bolt force at elevated temperature due to creep of bolt, flange and gasket separately and simultaneously. Besides, the influence of different initial installation stress of bolts was also studied. The results showed bolted flange joints relaxed due to gasket creep during early short term service. However, contribution of bolt and flange creep became more and more significant with the extension of time. With considering the creep of bolt, flange and gasket simultaneously, 50% to 60% of the bolt material yield strength at room temperature was recommended as the bolt initial installation stress for the joint case studied in this paper.


2018 ◽  
Vol 767 ◽  
pp. 248-255
Author(s):  
Kazuhito Asai ◽  
Kazuhiko Kitamura ◽  
Keisuke Goto ◽  
Nobukazu Hayashi

A backward can extrusion test provides severe tribological conditions because high pressure, high temperature, and large surface expansion ratio affect the lubricant. During the forward stroke these conditions intensify with increasing cup depth of the extruded workpiece; additionally, the back-stroke force during retraction of the punch rises to a significant level under a poor-lubricated condition. This study estimates the coefficient of friction μp between punch and workpiece during the back-stroke by combining experiments using conventional soap-phosphate coated steel and numerical analysis by FEM. The values of μp were estimated to be 0.09 and 0.03 in case of small and large workpiece depth, respectively. Friction decreased with elevating temperature.


2011 ◽  
Vol 402 ◽  
pp. 151-155 ◽  
Author(s):  
Fu Ming Zhang

In recent years great progress is made in technical equipment of large blast furnace in China. A series of new process, technologies and equipment, integrated and developed on our own, are applied on newly built large blast furnaces and have been proved to be highly effective. After more than 20 years’ development and innovation of the bell-less top equipment designed and developed on our own, it has reached the advanced level in the world in terms of equipment reliability and service life; fully-dry impulse bag filter dedusting technology of BF gas, which is also developed on our own, has gained technical breakthroughs in terms of optimized system design, gas temperature control, pneumatic conveying of dedusting fines; the integrated innovative high-efficiency long-life high-temperature technology, through applying high-temperature preheating technology of combustion air, improving heat transfer efficiency of hot blast stove and optimizing structure of the hot blast stove system, enables the blast temperature to reach 1250°C with BF gas as fuel.


Sign in / Sign up

Export Citation Format

Share Document