Experimental Study on Large Deflection of Tapered Cantilever Beam Considering Axially Functionally Graded Material

2017 ◽  
Vol 2017.25 (0) ◽  
pp. 207
Author(s):  
Hiroki TERAO ◽  
Tadashi HORIBE ◽  
Kotaro MORI ◽  
Hiroshi KIMOTO
Author(s):  
Pankaj Sharma ◽  
Rahul Singh ◽  
Muzamal Hussain

This investigation focuses on the modal analysis of an axially functionally graded material beam under hygrothermal effect. The material constants of the beam are supposed to be graded smoothly along the axial direction under both power law and sigmoid law distribution. A finite element analysis with COMSOL Multiphysics® (version 5.2) package is used to find the Eigen frequencies of the beam. The accuracy of the technique is authenticated by relating the results with the prior investigation for reduced case. The effects of moisture changes, temperature, and volume fraction index, length-to-thickness ratio on the Eigen frequencies are investigated in detail. It is believed that the present investigation may be useful in the design of highly efficient environmental sensors for structural health monitoring perspective.


Author(s):  
Wael Zaki ◽  
N. V. Viet

Based on the ZM model for shape memory alloys, an analytical model is derived for a functionally graded material (FGM)/shape memory alloy (SMA) laminated composite cantilever beam subjected to concentrated force at the tip. The beam consists of a SMA core layer bonded to identical FGM layers on both sides. The FGM layer is considered to be elastic with an equivalent Young’s modulus related to those of the constituents by means of a power law. Phase transformation within the SMA layer is accounted for in deriving the analytical relations, which are validated against finite element analysis results.


2021 ◽  
pp. 107754632110371
Author(s):  
Rahul Singh ◽  
Pankaj Sharma

The vibration analysis of an axially functionally graded material non-prismatic Timoshenko beam under axial thermal variation in humid environment is carried out using the harmonic differential quadrature method. In this modeling, the length and width of the beam remains constant whereas thickness of the beam is linearly varied along the axis of the beam. The material properties are temperature dependent and are assumed to be varied continuously along the axial direction according to power law distribution. Three types of temperature variations are considered in this study, that is, uniform temperature rise, linear temperature rise, and non-linear temperature rise. The temperature of the beam remains constant under uniform temperature rise condition and it is varied linearly and nonlinearly along the length of beam for rest of the conditions. The beam is subjected to uniform moisture concentration to impose humidity. Hamiltonian’s approach is used to derive the governing equations of motion. The resultant governing equations are then solved using the harmonic differential quadrature method to obtain the natural frequencies of the axially functionally graded material non-prismatic beam. The results obtained using the harmonic differential quadrature method are compared with results obtained for special cases. The effects of thermal variation, humidity, non-homogeneity parameter, and end conditions on natural frequencies of the non-prismatic beam are reported.


2007 ◽  
Vol 07 (02) ◽  
pp. 193-211 ◽  
Author(s):  
H. R. OVESY ◽  
S. A. M. GHANNADPOUR

Description is given for a finite strip method for analyzing the large deflection response of simply supported rectangular functionally graded plates under normal pressure loading. The material properties of the functionally graded plates are assumed to vary continuously through the thickness of the plate, according to the simple power law and exponential law distribution. Both distributions of material properties are used to examine the stress variations. The fundamental equations for rectangular plates of functionally graded material (FGM) are obtained by discretizing the plate into some finite strips, which are developed by combining the Von–Karman theory for large transverse deflection and the concept of functionally graded material. The solution is obtained by the minimization of the total potential energy. The Newton–Raphson method is used to solve the non-linear equilibrium equations. Numerical results for square functionally graded plates are given in dimensionless graphical forms, and compared to the available results, wherever possible. The effects of material properties on the stress field through the thickness and on the variation of the central deflection at a given value of normal pressure loading are determined and discussed.


2017 ◽  
Vol 730 ◽  
pp. 502-509 ◽  
Author(s):  
Buntara Sthenly Gan ◽  
Thanh Huong Trinh ◽  
Takahiro Hara ◽  
Dinh Kien Nguyen ◽  
Thi Thom Tran

The effects of support conditions to the post-buckling behaviors of rod structures made of Axially Functionally Graded Material (AFGM) are presented. The material property of the rod member is assumed to vary linearly in the axis direction of the member. The non-linear material property of the rod element is formulated in the Finite Element context. The consistent shape functions for the rod element were developed to take into account the varying material property in the finite element formulation. The geometrically non-linear behavior of the rod element is formulated in the context of the updated co-rotational formulation. The non-linear equilibrium equations are solved by using the incremental and iterative procedures in combination with the arc-length control method. The influences of the material distribution on the post-buckling behaviors of the AFGM Williams’ toggle frames under various support conditions are highlighted. As a result, the graded between two materials can increase the post-buckling behaviors of the AFGM rod element regardless of the types of support conditions. The orientation of material distributions combined with the type of support condition can increase the performance of the rod element. The fixed-fixed support condition showed the highest performance of the AFGM rod element.


Sign in / Sign up

Export Citation Format

Share Document