20506 The Aerodynamic Characteristics of a Delta Wing with Leading Edge Flaps

2014 ◽  
Vol 2014.20 (0) ◽  
pp. _20506-1_-_20506-2_
Author(s):  
Tadateru ISHIDE ◽  
Hiroki NAKAYAMA ◽  
Kazuya NAGANUMA ◽  
Keiju MAKIMOTO ◽  
Hiroyuki ISHIKAWA ◽  
...  
2016 ◽  
Vol 138 (6) ◽  
Author(s):  
T. Lee

The impact of Gurney flaplike strips, of different geometric configurations and heights, on the aerodynamic characteristics and the tip vortices generated by a reverse delta wing (RDW) was investigated via force-balance measurement and particle image velocimetry (PIV). The addition of side-edge strips (SESs) caused a leftward shift of the lift curve, resembling a conventional trailing-edge flap. The large lift increment overwhelmed the corresponding drag increase, thereby leading to an improved lift-to-drag ratio compared to the baseline wing. The lift and drag coefficients were also found to increase with the strip height. The SES-equipped wing also produced a strengthened vortex compared to its baseline wing counterpart. The leading-edge strips (LESs) were, however, found to persistently produce a greatly diffused vortex flow as well as a small-than-baseline-wing lift in the prestall α regime. The downward LES delivered a delayed stall and an increased maximum lift coefficient compared to the baseline wing. The LESs provide a potential wingtip vortex control alternative, while the SESs can enhance the aerodynamic performance of the RDW.


Author(s):  
Tadateru Ishide ◽  
Kazuya Naganuma ◽  
Shinsuke Seiji ◽  
Hiroyuki Ishikawa ◽  
Ryo Fujii ◽  
...  

Recently, various studies of Micro Air Vehicle (MAV) and Unmanned Air Vehicle (UAV) have been reported from wide range points of view. The aim of this study are researching the aerodynamic improvement of delta wing and flapping wing in low Reynold’s number region to develop an applicative these air vehicle. Various configurations of Leading Edge Flap (LEF) are used to enhance the aerodynamic characteristics in the delta wing. The six kind of elliptical wings made of stainless steel are used in the flapping wing. The effects of flapping amplitude and wing configuration regarding the aerodynamic characteristics are investigated in detail. The fluid force measurement by six component load cell and PIV analysis are performed as the experimental method. In the flapping wing experiment, the simultaneous measuring of the fluid force measurement and PIV analysis is tried by using the trigger signal from the encoder attached to the flapping model. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.


Aerospace ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Andrei Buzica ◽  
Christian Breitsamter

Manipulation of vortex instabilities for aerodynamic performance increase is of great interest in numerous aeronautical applications. With increasing angle of attack, the leading-edge vortex of a semi-slender delta wing becomes unsteady and eventually collapses, endangering the flight stability. Hence, active flow control by pulsed blowing stabilizes the vortex system, enlarging the flight envelope for such wing configurations. The most beneficial outcome is the reattachment of the separated shear layer during post-stall, contributing to a lift increase of more than 50%. In contrast to high power consuming brute-force actuation, manipulating the flow instabilities offers a more efficient alternative for mean flow field control, which has direct repercussions on the aerodynamic characteristics. However, the flow mechanisms involving jet–vortex and vortex–vortex interactions and the disturbance convection through the flow field are little understood. This paper reports on the unsteady flow field above a generic half delta wing model with a 65 ° sweep angle and its response to periodic blowing. Numerical and experimental results are presented and discussed in a synergistic manner.


2007 ◽  
Vol 5 (2) ◽  
pp. 56-63
Author(s):  
Hak-Su Jin ◽  
Sung-Cho Kim ◽  
Jeong-Soo Kim ◽  
Jong-Wook Choi

2019 ◽  
Vol 889 ◽  
pp. 434-439
Author(s):  
Ngoc Khanh Tran ◽  
Van Khang Nguyen ◽  
Phu Khanh Nguyen ◽  
Thi Kim Dung Hoang ◽  
Van Quang Dao

This paper aims to estimate the effect of turbulent inlet flow to vortices on Delta wing with four different turbulence intensity from 0.5% to 15% and the effect of taper ratios to aerodynamic characteristics of Delta wings with four taper ratios: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. The main purpose of this paper is to find out the formation, development, and breakdown of vortices on Delta wings when changing taper ratios and turbulence intensity thence determining the center of vortices with the range of attack angles from 5o to 40o in low velocities about 2.5 m/s. This research uses Delta wing models with a 40o swept-back leading edge, the root chord length 150 mm, and a thickness 5 mm. The problem is simulated by using ANSYS fluent and experiment in the subsonic wind tunnel to compare and validate results. The Delta wing models are meshed by using ICEM to improve the mesh quality and using the turbulence model for low Reynolds number flows Transition SST (4 equations) to calculate aerodynamic characteristics such as lift coefficient, drag coefficient, pressure coefficient... find the paths which connect centers of the vortices, and show the contours of pressures and velocities to evaluate the change of centers of the vortices. The results showed that the two vortices grow up and tend to move inward when the attack angle increase, the vortices are broken strongly in high attack angles, the aerodynamic quality of Delta wings change insignificantly when changing turbulent intensity at inlet. This research also carried out that the stall angle increase when increasing the taper ratio.


Sign in / Sign up

Export Citation Format

Share Document