The Relationship between a Lower Wall and Aspect Ratio on Cross Flow Fan

2021 ◽  
Vol 2021.27 (0) ◽  
pp. 10D01
Author(s):  
Atsunori WATANABE ◽  
Wakana TSURU ◽  
Kazuhiko YOKOTA
2013 ◽  
Vol 2013.23 (0) ◽  
pp. 37-40
Author(s):  
Mitsuhiro YAMAMURA ◽  
Ryo MATSUMOTO ◽  
Hiroaki MIHARA ◽  
Jiro FUNAKI ◽  
Katsuya HIRATA

1986 ◽  
Vol 14 (4) ◽  
pp. 201-218 ◽  
Author(s):  
A. G. Veith

Abstract This four-part series of papers addresses the problem of systematic determination of the influence of several tire factors on tire treadwear. Both the main effect of each factor and some of their interactive effects are included. The program was also structured to evaluate the influence of some external-to-tire conditions on the relationship of tire factors to treadwear. Part I describes the experimental design used to evaluate the effects on treadwear of generic tire type, aspect ratio, tread pattern (groove or void level), type of pattern (straight rib or block), and tread compound. Construction procedures and precautions used to obtain a valid and functional test method are included. Two guiding principles to be used in the data analyses of Parts II and III are discussed. These are the fractional groove and void concept, to characterize tread pattern geometry, and a demonstration of the equivalence of wear rate for identical compounds on whole tread or multi-section tread tires.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Huanxin Lai ◽  
Meng Wang ◽  
Chuye Yun ◽  
Jin Yao

This paper presents a qualitative analysis of controlling the cross-flow fan noise by using porous stabilizers. The stabilizer was originally a folded plate. It is changed into a porous structure which has a plenum chamber and vent holes on the front wall. In order to investigate the influences of using the porous stabilizers, experiments are carried out to measure the cross-flow fan aerodynamic performances and sound radiation. Meanwhile, the internal flow field of the fan is numerically simulated. The results show that the porous stabilizers have not produced considerable effect on the cross-flow fan's performance curve, but the noise radiated from the fan is strongly affected. This indicates the feasibility of controlling the cross-flow fan noise by using the porous stabilizers with selected porosity.


Author(s):  
Susheel Singh ◽  
Sumanta Acharya ◽  
Forrest Ames

Flow and heat transfer in a low aspect ratio pin-finned channel, representative of an internally cooled turbine airfoil, is investigated using Large Eddy Simulations (LES). To achieve greater control of surface cooling distribution, a novel approach has been recently proposed in which coolant is injected incrementally through a series of holes located immediately behind a specially designed cutout region downstream of the pin-fins. Sheltering the coolant injection behind the pin-fins avoids the impact of the cross-flow buildup that deflects the impingement jet and isolates the surface from cooling. The longitudinal and transverse spacing of the pin-fins, arranged in a staggered fashion, is X/D = 1.046 and S/D = 1.625, respectively. The aspect ratio (H/D) of pin-fin channel is 0.5. Due to the presence of the sequential jets in the configuration, the local cooling rates can be controlled by controlling the jet-hole diameter which impacts the jet mass flow rate. Hence, four different hole diameters, denoted as Large (L), Medium (M) , Small (S), Petite (P) are tested for impingement holes, and their effects are studied. Several patterns of the hole-size distributions are studied. It is shown that the peak Nusselt number in the stagnation region below the jet correlates directly with the jet-velocity, while downstream the Nusselt numbers correlate with the total mass flow rates or the average channel velocity. The local cooling parameter defined as (Nu/Nu0)(1-ε) correlates with the jet/channel mass flow rates.


2011 ◽  
Vol 103 ◽  
pp. 268-273
Author(s):  
Hong Jie Yan ◽  
Ping Zhou ◽  
Ze Lin Xu ◽  
Zhuo Chen ◽  
Jing Wen Mo

The flow characteristics of water in filleted microchannels were simulated based on CFD method. The flow pressure drop at different aspect ratioandRenumber were rearranged on the simulating results with laminar flow model. The results indicated that the pressure drop enlarges with the increase of in the case of the constant width of the microchannel. Within the range ofRenumber of interest, Poiseuille number of the flow is constant for differentRe, but decreases with increasing aspect ratio. An equation was fitted to describe the relationship betweenPonumber and aspect ratio, i.e. .


Author(s):  
Hironobu Yamakawa

Cross flow fans are used for fan systems in a household room air conditioner indoor unit. In recently, in the view of environmental problem and cost saving, energy saving performance is important specification for users. Reducing fan motor electric power consumption is effective for this purpose. And also low noise fans are needed for comfortable circumferences. To meet these user needs, we developed a high efficiency and silent cross flow fan using CFD (Computational Fluid Dynamics) and experiments. In CFD, numerical model is calculated by commercial software using steady state, Reynolds-averaged Navier-Stokes (RANS) and k-ε turbulent flow model. The developed cross flow fan is geometrically characterized by the solidity (the ratio of the blade pitch and blade cord length) distribution, and the blade edge shape. The solidity average of developed fan was larger than the conventional fan and the solidity distribution was smooth. And the developed fan has the sinusoidal shape of the outer diameter edge. This sinusoidal shape edge makes pressure distribution on the tongue to be more dispersed compare to that of conventional straight edge so that tonal noise was restrained.


2016 ◽  
Vol 88 (6) ◽  
pp. 783-790 ◽  
Author(s):  
Lin Meng ◽  
Yongqiang Ye

Purpose This paper aims to study the short take-off characteristics and longitudinal controllability of FanWing. As a new structural plane, it has achieved great success at the air shows, but the existing literature is mostly on feasibility and prototype study while little on short take-off performance analysis and controllability. Thus, the paper will do some research on those two aspects. Design/methodology/approach This paper focuses on a certain type of a 3.5 kg FanWing and builds the longitudinal model based on its structure characteristics and operation principle. Its take-off process is simulated and the longitudinal control law is designed. Findings The short take-off performance and the large load characteristic are verified. To attain a better short take-off performance, several factors that influence the take-off distance are researched, and the optimal no-load take-off distance 5 m is obtained when the elevator deflection angle is −30°, the center of gravity is 0.42 m and the cross-flow fan rotation speed is 2500 r/min. The longitudinal controllability is verified through simulation. And without variable cross-flow fan rotation speed control, the longitudinal control of FanWing is the same to that of the conventional aircraft. Practical implications The presented efforts provide markers for designing the fan wing aircraft that would have better performances. And the control of FanWing is similar to that of a conventional airplane. Originality/value It is proved that FanWing can offer a better take-off performance through reasonable configuration. The paper also offers a useful reference on the control of FanWing.


Author(s):  
Florent Colomb ◽  
Stanislav Karpuk ◽  
Marina Kazarina ◽  
Vladimir V. Golubev ◽  
Reda R. Mankbadi

Sign in / Sign up

Export Citation Format

Share Document