Numerical Investigation of Local Cooling Enhancement Using Pin-Finned Channel With Incremental Impingement

Author(s):  
Susheel Singh ◽  
Sumanta Acharya ◽  
Forrest Ames

Flow and heat transfer in a low aspect ratio pin-finned channel, representative of an internally cooled turbine airfoil, is investigated using Large Eddy Simulations (LES). To achieve greater control of surface cooling distribution, a novel approach has been recently proposed in which coolant is injected incrementally through a series of holes located immediately behind a specially designed cutout region downstream of the pin-fins. Sheltering the coolant injection behind the pin-fins avoids the impact of the cross-flow buildup that deflects the impingement jet and isolates the surface from cooling. The longitudinal and transverse spacing of the pin-fins, arranged in a staggered fashion, is X/D = 1.046 and S/D = 1.625, respectively. The aspect ratio (H/D) of pin-fin channel is 0.5. Due to the presence of the sequential jets in the configuration, the local cooling rates can be controlled by controlling the jet-hole diameter which impacts the jet mass flow rate. Hence, four different hole diameters, denoted as Large (L), Medium (M) , Small (S), Petite (P) are tested for impingement holes, and their effects are studied. Several patterns of the hole-size distributions are studied. It is shown that the peak Nusselt number in the stagnation region below the jet correlates directly with the jet-velocity, while downstream the Nusselt numbers correlate with the total mass flow rates or the average channel velocity. The local cooling parameter defined as (Nu/Nu0)(1-ε) correlates with the jet/channel mass flow rates.

2021 ◽  
pp. 1-24
Author(s):  
Ahmed Rezk ◽  
Sidharath Sharma ◽  
S.M. Barrans ◽  
Abul Kalam Hossain ◽  
P. Samuel Lee ◽  
...  

Abstract Radial flow turbines are extensively used in turbocharging technology due to their unique capability of handling a wide range of exhaust gas flow. The pulsating flow nature of the internal combustion engine exhaust gases causes unsteady operation of the turbine stage. This paper presents the impact of the pulsating flow of various characteristics on the performance of a radial flow turbine. A three-dimensional computational fluid dynamic model was coupled with a one-dimensional engine model to study the realistic pulsating flow. Applying square wave pulsating flow showed the highest degree of unsteadiness corresponding to 92.6% maximum mass flow accumulation due to the consecutive sudden changes of the mass flow rates over the entire pulse. Although saw-tooth showed a maximum mass flow accumulation value of 88.9%, the mass flow rates entailed gradual change resulted in the least overall mass flow accumulation over the entire pulse. These two extremes constrained the anticipated performance of the radial flow turbine operates under realistic pulsating flow. Such constraints could develop an operating envelop to predict the performance and optimize radial flow turbines' power extraction under pulsating flow conditions.


2008 ◽  
Vol 12 (3) ◽  
pp. 75-84
Author(s):  
Sorour Alotaibi ◽  
Asad Alebrahim

The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.


Author(s):  
Jason Walkingshaw ◽  
Georgios Iosifidis ◽  
Tobias Scheuermann ◽  
Dietmar Filsinger ◽  
Nobuyuki Ikeya

As a means of meeting ever increasing emissions and fuel economy demands car manufacturers are using aggressive engine downsizing. To maintain the power output of the engine turbocharging is typically used. Due to the miss-match of the mass flow characteristics of the engine to the turbocharger, at low engine mass flow rates, the turbocharger can suffer from slow response known as “Turbolag”. Mono-scroll turbines are capable of providing good performance at high mass flow rates and in conjunction with low inertia mixed flow turbines can offer some benefits for transient engine response. With a multi-entry system the individual volute sizing can be matched to the single mass flow pulse from the engine cylinders. The exhaust pulse energy can be better utilised by the turbocharger turbine improving turbocharger response, while the interaction of the engine exhaust pulses can be better avoided, improving the scavenging of the engine. The behaviour of a mono-scroll turbocharger with the engine using engine simulation tools has been well established. What requires further investigation is the comparison with multi-entry turbines. CFD (Computational Fluid Dynamics) has been used to examine the single admission behaviour of a twin and double scroll turbine. Turbocharger gas stand maps of the multi-entry turbines have been measured at full and single admission. This data has been used in a 0D engine model. In addition, the turbine stage has been tested on the engine and a validation of the engine model against the engine test data is presented. Using the validated engine model a comparison has been made to understand the differences in the sizing requirements of the turbine and the interaction of the mono-scroll and multi-entry turbines with the engine. The impact of the different efficiency and mass flow rate trends of the mono and multi-entry turbochargers are discussed and the trade-offs between the design configurations regarding on engine behaviour are investigated.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3537
Author(s):  
Charles Stuart ◽  
Stephen Spence ◽  
Sönke Teichel ◽  
Andre Starke

The implementation of increasingly stringent emissions and efficiency targets has seen engine downsizing and other complementary technologies increase in prevalence throughout the automotive sector. In order to facilitate ongoing improvements associated with the use of these strategies, delivering enhancements to the performance and stability of the turbocharger compressor when operating at low mass flow rates is of paramount importance. In spite of this, a few concepts (either active or passive) targeting such aims have successfully transitioned into use in automotive turbochargers, due primarily to the requirement for a very wide compressor-operating range. In order to overcome the operational limitations associated with existing pre-swirl generation devices such as inlet guide vanes, this study developed a concept comprising of an electrically driven axial fan mounted upstream of a standard automotive turbocharger centrifugal compressor. Rather than targeting a direct contribution to compressor boost pressure, the fan was designed to act as a variable pre-swirl generation device capable of being operated completely independently of the centrifugal impeller. It was envisioned that this architecture would allow efficient generation of the large pre-swirl angles needed for compressor surge margin extension and efficiency enhancement at low mass flow rate-operating points, while also facilitating the delivery of zero pre-swirl at higher mass flow rates to ensure no detrimental impact on performance at the rated power point of the engine. Having progressed through 1-D and 3-D aerodynamic modelling phases to understand the potential of the system, detailed component design and hardware manufacture were completed to enable an extensive experimental test campaign to be conducted. The experimental results were scrutinized to validate the numerical findings and to test the surge margin extension potential of the device. Compressor efficiency improvements of up to 3.0% pts were witnessed at the target-operating conditions.


Author(s):  
Karthik Silaipillayarputhur ◽  
Ali Al-Saif ◽  
Musab Al-Otaibi

In this paper, steady state sensible performance analysis on multi pass parallel cross flow exchanger was considered. The inputs to the heat exchanger were described through meaningful physically significant parameters such as number of transfer units, capacity rate ratio and dimensionless input temperature. The inputs to the heat exchager were varied systematically and a parametric study was conducted to determine the thermal performance at each individual pass of the heat exchanger. Heat exchanger’s thermal performance was described through the discharge temperatures that were expressed in a dimensionless form. The results from the study were presented in the form of performance tables. The performance tables employed meaningful and industry recognized dimensionless input parameters and the heat exchanger‘s performance was described through dimensionless discharge temperatures at every pass of the heat exchanger. The developed performance tables shall serve two critical aspects. First, it will help the heat exchanger designers to readily choose an optimum heat exchanger. An undersized heat exchanger shall not deliver the requirements and likewise an oversized heat exchanger shall add unnecessary weight and cost. This aspect was clearly observed in this study as indefinetly increasing the number of transfer units (or surface area) beyond a threshold value didn’t enhance the heat transfer. By employing the performance tables as a guide, the heat exchanger designers can quickly ascertain the performance of the heat exchanger without having to perform simulations and/or lengthy calculations. Second, during operational phase of the heat exchanger, the performance tables can be used to understand the performance variation of the heat exchanger with respect to mass flow rates and/or can help the engineers to choose appropriate mass flow rates for the required heat transfer. The highest heat exchanger performance was observed at the lowest capacity rate ratio and likewise the lowest heat exchanger performance was observed at the highest capacity rate ratio. In-addition, during the operational phase, the performance tables can help to detect an underperforming heat exchanger and can help the engineers to schedule maintenance activity on the heat exchanger equipment.


1984 ◽  
Vol 106 (4) ◽  
pp. 435-440 ◽  
Author(s):  
S. Genc¸ay ◽  
A. Tapucu ◽  
N. Troche ◽  
M. Merilo

In this research, the hydrodynamic behavior of two laterally interconnected channels with blockages in one of them has been studied experimentally. For blockages of different shapes and severities, the mass flow rates as well as the pressures in the channels upstream and downstream of the blockage were determined. The experiments were conducted on a test sections which consists of two-square channels separated by an intermediate plate with slots of different geometric parameters. Two types of blockages have been considered: plate and smooth. The shape of the smooth blockage was a cosine. In the region upstream of the blockage, the diversion cross-flow takes place over a relatively short distance. Downstream of the blockage, the recovery of the diverted flow by the blocked channel is a slow process and the rate of this recovery worsens with increasing blockage severity. For a given blockage rate, the diversion crossflow caused by a smooth blockage is smaller than that of a plate blockage.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Sign in / Sign up

Export Citation Format

Share Document