scholarly journals 412 Zero Emission Gas Turbine-Steam Turbine Combined Cycle with Low-Pressure Gas Turbine Exhaust

2000 ◽  
Vol 2000.53 (0) ◽  
pp. 107-108
Author(s):  
Sanjayan VELAUTHAM ◽  
Takehiro ITO ◽  
Yasuyuki TAKATA
Author(s):  
R. W. Jones ◽  
A. C. Shoults

This paper presents details of three large gas turbine installations in the Freeport, Texas, power plants of the Dow Chemical Company. The general plant layout, integration of useful outputs, economic factors leading to the selection of these units, and experiences during startup and operation will be reviewed. All three units operate with supercharging fan, evaporative cooler, and static excitation. Two of the installations are nearly identical 32,000-kw gas turbines operating in a combined cycle with a supplementary fired 1,500,000-lb/hr boiler and a 50,000-kw noncondensing steam turbine. The other installation is a 43,000-kw gas turbine and a 20,000-kw starter-helper steam turbine on the same shaft. The gas turbine exhaust is used to supply heated feedwater for four existing boilers.


Author(s):  
S. Can Gülen

A supercritical steam bottoming cycle has been proposed as a performance enhancement option for gas turbine combined cycle power plants. The technology has been widely used in coal-fired steam turbine power plants since the 1950s and can be considered a mature technology. Its application to the gas-fired combined cycle systems presents unique design challenges due to the much lower gas temperatures (i.e., 650 °C at the gas turbine exhaust vis-à-vis 2000 °C in fossil fuel-fired steam boilers). Thus, the potential impact of the supercritical steam conditions is hampered to the point of economic infeasibility. This technical brief draws upon the second-law based exergy concept to rigorously quantify the performance entitlement of a supercritical high-pressure boiler section in a heat recovery steam generator utilizing the exhaust of a gas turbine to generate steam for power generation in a steam turbine.


1998 ◽  
Vol 120 (07) ◽  
pp. 72-73 ◽  
Author(s):  
Michael Valent

This article reviews that twenty-first century passengers on the Royal Caribbean International and Celebrity Cruises are set to make history in style. Up to six of Royal Caribbean’s Voyager- and Millennium-class vessels will be the first cruise ships ever powered by General Electric’s gas turbines. In addition to reducing engine-room noise and vibration and cutting emissions, this propulsion system—a departure from the traditional diesel engine—will make it possible for ships to set sail with a reduced maintenance crew and smaller parts inventory. Royal Caribbean International currently operates a fleet of 12 ships. In the Royal Caribbean application, the GE gas turbine will be used to drive generators that will provide electricity to propeller motors. The steam turbine will recover heat from the gas turbine exhaust for other uses. This combined gas turbine and steam turbine integrated electric drive system represents a departure from diesel engines in more than one respect.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


Author(s):  
A. Hofstädter ◽  
H. U. Frutschi ◽  
H. Haselbacher

Steam injection is a well-known principle for increasing gas turbine efficiency by taking advantage of the relatively high gas turbine exhaust temperatures. Unfortunately, performance is not sufficiently improved compared with alternative bottoming cycles. However, previously investigated supplements to the STIG-principle — such as sequential combustion and consideration of a back pressure steam turbine — led to a remarkable increase in efficiency. The cycle presented in this paper includes a further improvement: The steam, which exits from the back pressure steam turbine at a rather low temperature, is no longer led directly into the combustion chamber. Instead, it reenters the boiler to be further superheated. This modification yields additional improvement of the thermal efficiency due to a significant reduction of fuel consumption. Taking into account the simpler design compared with combined-cycle power plants, the described type of an advanced STIG-cycle (A-STIG) could represent an interesting alternative regarding peak and medium load power plants.


Author(s):  
Takeharu Hasegawa

Our study found that burning a CO-rich gasified coal fuel, derived from an oxygen–CO2 blown gasifier, with oxygen under stoichiometric conditions in a closed cycle gas turbine produced a highly-efficient, oxy-fuel integrated coal gasification combined cycle (IGCC) power generation system with CO2 capture. We diluted stoichiometric combustion with recycled gas turbine exhaust and adjusted for given temperatures. Some of the exhaust was used to feed coal into the gasifier. In doing so, we found it necessary to minimize not only CO and H2 of unburned fuel constituents but also residual O2, not consumed in the gas turbine combustion process. In this study, we examined the emission characteristics of gasified-fueled stoichiometric combustion with oxygen through numerical analysis based on reaction kinetics. Furthermore, we investigated the reaction characteristics of reactant gases of CO, H2, and O2 remaining in the recirculating gas turbine exhaust using present numerical procedures. As a result, we were able to clarify that since fuel oxidation reaction is inhibited due to reasons of exhaust recirculation and lower oxygen partial pressure, CO oxidization is very sluggish and combustion reaction does not reach equilibrium at the combustor exit. In the case of a combustor exhaust temperature of 1573 K (1300 °C), we estimated that high CO exhaust emissions of about a few percent, in tens of milliseconds, corresponded to the combustion gas residence time in the gas turbine combustor. Combustion efficiency was estimated to reach only about 76%, which was a lower value compared to H2/O2-fired combustion while residual O2 in exhaust was 2.5 vol%, or five times as much as the equilibrium concentration. On the other hand, unburned constituents in an expansion turbine exhaust were slowed to oxidize in a heat recovery steam generator (HRSG) flue processing, and exhaust gases reached equilibrium conditions. In this regard, however, reaction heat in HRSG could not devote enough energy for combined cycle thermal efficiency, making advanced combustion technology necessary for achieving highly efficient, oxy-fuel IGCC.


Author(s):  
Anthony E. Butler ◽  
Jagadish Nanjappa

“Combined Turbine Equipment Performance” represents the combined performance of the Gas Turbine-Generator(s) and the Steam Turbine-Generator(s), while disregarding or holding the performance of the remaining equipment in the Power Plant at its design levels. The lack of established industry standards and methods addressing the manner in which combined turbine equipment performance should be determined has invited confusion and has created opportunities for technical errors to go undetected. This paper presents a method and the supporting theory by which the corrected performance of the turbine-generators within a combined cycle plant can be combined to gauge their combined performance levels for either contractual compliance or for diagnostic purposes. The Combined Turbine Equipment Performance methodology provided in this paper, allows the performance engineer to easily separate the performance contribution of each turbine generator from the overall plant performance. As such, this information becomes a powerful diagnostic tool in circumstances where a reconciliation of overall plant performance is desired. Individual (gas or steam) turbine performance can be determined by conducting a test in accordance with the respective test code (ASME PTC 22 or PTC 6.2). However, each of these test codes corrects the measured equipment performance to fundamentally different reference conditions. Where the gas turbine-generator measured performance is corrected primarily to ambient reference conditions, the steam turbine-generator measured performance is corrected to steam flows and other steam reference conditions. The simple mathematical addition of the corrected performance of each turbine ignores the well-known fact that the steam turbine-generator output in a combined cycle plant is impacted by the gas turbine exhaust conditions, in particular the gas turbine exhaust flow and temperature. The purpose of this paper is to provide a method for the determination of “Combined Turbine Equipment Performance”, review the supporting theory, highlight the assumptions, and develop useful transfer functions for some commonly used combined cycle plant configurations, and bound the uncertainty associated with the methodology.


1990 ◽  
Vol 112 (4) ◽  
pp. 585-589 ◽  
Author(s):  
B. W. Harris

Acid dewpoints were calculated from SO2-to-SO3 conversion in gas turbine exhaust. These data can be used as guidelines in setting feedwater temperatures in combined-cycle systems. Accurate settings can prevent corrosion of heat-exchanger (boiler) tubes, thus extending their life time. This study was done using gas turbine engines and a laboratory generator set. The units burned marine diesel or diesel No. 2 fuel with sulfur contents up to 1.3 percent. The exhaust from these systems contained an excess of 20 percent oxygen, and 3–10 percent water vapor. Exhaust temperatures ranged from 728 to 893 K (455 to 620°C).


Vestnik IGEU ◽  
2020 ◽  
pp. 26-37
Author(s):  
V.A. Chernikov ◽  
E.L. Kitanin ◽  
E.Yu. Semakina ◽  
E.E. Kitanina

Currently, thermal insulation of GTU output diffusers uses insulation of their inner surface. This is an expensive and complicated technological procedure. For gas turbines as part of CCGT, in order to reduce the cost of insulation and at the same time increase the useful power of the turbine, cooling the diffuser outer surface with a steam stream of a steam circuit can be an alternative way of internal insulation. Steam and gas parameters of a combined cycle plant with a CCGT-450T, as well as the results of experimental and computational studies of the GTU SGT5-3000E gas turbine exhaust channel model were used. The calculations of the efficiency of the surface cooling of the diffuser with the steam coming from the steam circuit were carried out using the analytical method. A scheme of a superheater located on the outer surface of the GTU outlet diffuser operating in a combined cycle is proposed. Analytic evaluation of its effectiveness showed that the surface area of the GTU diffuser of the type SGT5-3000E is sufficient to provide the necessary overheating of low-pressure steam. Installation of such a heat exchanger using the outer surface of the diffuser provides a decrease of the temperature of its outer wall from 537 to 200 оC. The study validity is confirmed by a patent for an invention. It has been established that the use of the outer surface of the GTU outlet diffuser instead of the heat exchange surface of the low pressure superheater of the utilizer boiler can be applied at CCGT unit to reduce heat and hydraulic losses in the diffuser path and in the utilizer boiler path.


Author(s):  
H. Jericha ◽  
M. Fesharaki ◽  
A. Seyr

Improvements to the steam bottoming cycles hold the promise of raising the combined cycle thermal efficiency to values near and above 60%. Up to now, steam bottoming cycles with three pressure levels of steam evaporation have been realised. A further advantage seems possible by the use of double fluids, such as mixtures of steam and ammonia. In the cycle proposed here, the authors limit Themselves to the use of steam and water only, in order to avoid all the difficulties, that may arise from such mixtures. The solution given here, relies on multiple evaporation levels, more than three up to five and even more. They should be to be achieved with the help of newly developed steam turbochargers, which allow the unification of the steam flow from three different neighbouring pressure levels, into one steam flow to be transmitted via the live steam line to the main turbine. This large number of evaporation levels, together with the required economisers for feed water heating and the ensuing superheaters arranged in the proper way, gives a steam water heat acceptance curve, which can be closely matched to the exhaust gas cooling line, so that the heat transfer from the gas turbine exhaust to the steam bottoming cycle can be effected with a minimum of temperature differences. It should be pointed out that the steam pressures are selected in the undercritical region, and that a total combined cycle efficiency very near to 60% can be achieved. Using most modern gas turbine models together with this novel bottoming cycle will even allow to exceed the value of 60%. Examples given have been calculated for standard gas turbine models.


Sign in / Sign up

Export Citation Format

Share Document