Combined Turbine Equipment Performance

Author(s):  
Anthony E. Butler ◽  
Jagadish Nanjappa

“Combined Turbine Equipment Performance” represents the combined performance of the Gas Turbine-Generator(s) and the Steam Turbine-Generator(s), while disregarding or holding the performance of the remaining equipment in the Power Plant at its design levels. The lack of established industry standards and methods addressing the manner in which combined turbine equipment performance should be determined has invited confusion and has created opportunities for technical errors to go undetected. This paper presents a method and the supporting theory by which the corrected performance of the turbine-generators within a combined cycle plant can be combined to gauge their combined performance levels for either contractual compliance or for diagnostic purposes. The Combined Turbine Equipment Performance methodology provided in this paper, allows the performance engineer to easily separate the performance contribution of each turbine generator from the overall plant performance. As such, this information becomes a powerful diagnostic tool in circumstances where a reconciliation of overall plant performance is desired. Individual (gas or steam) turbine performance can be determined by conducting a test in accordance with the respective test code (ASME PTC 22 or PTC 6.2). However, each of these test codes corrects the measured equipment performance to fundamentally different reference conditions. Where the gas turbine-generator measured performance is corrected primarily to ambient reference conditions, the steam turbine-generator measured performance is corrected to steam flows and other steam reference conditions. The simple mathematical addition of the corrected performance of each turbine ignores the well-known fact that the steam turbine-generator output in a combined cycle plant is impacted by the gas turbine exhaust conditions, in particular the gas turbine exhaust flow and temperature. The purpose of this paper is to provide a method for the determination of “Combined Turbine Equipment Performance”, review the supporting theory, highlight the assumptions, and develop useful transfer functions for some commonly used combined cycle plant configurations, and bound the uncertainty associated with the methodology.

Author(s):  
A. Zwebek ◽  
P. Pilidis

This paper describes the effects of degradation of the main gas path components of the gas turbine topping cycle on the Combined Cycle Gas Turbine (CCGT) plant performance. Firstly the component degradation effects on the gas turbine performance as an independent unit are examined. It is then shown how this degradation is reflected on a steam turbine plant of the CCGT and on the complete Combined Cycle plant. TURBOMATCH, the gas turbine performance code of Cranfield University was used to predict the effects of degraded gas path components of the gas turbine have on its performance as a whole plant. To simulate the steam (Bottoming) cycle, another Fortran code was developed. Both codes were used together to form a complete software system that can predict the CCGT plant design point, off-design, and deteriorated (due to component degradation) performances. The results show that the overall output is very sensitive to many types of degradation, specially in the turbine of the gas turbine. Also shown is the effect on gas turbine exhaust conditions and how this affects the steam cycle.


2003 ◽  
Vol 125 (3) ◽  
pp. 651-657 ◽  
Author(s):  
A. Zwebek ◽  
P. Pilidis

This paper describes the effects of degradation of the main gas path components of the gas turbine topping cycle on the combined cycle gas turbine (CCGT) plant performance. First, the component degradation effects on the gas turbine performance as an independent unit are examined. It is then shown how this degradation is reflected on a steam turbine plant of the CCGT and on the complete combined cycle plant. TURBOMATCH, the gas turbine performance code of Cranfield University, was used to predict the effects of degraded gas path components of the gas turbine have on its performance as a whole plant. To simulate the steam (bottoming) cycle, another Fortran code was developed. Both codes were used together to form a complete software system that can predict the CCGT plant design point, off-design, and deteriorated (due to component degradation) performances. The results show that the overall output is very sensitive to many types of degradation, especially in the turbine of the gas turbine. Also shown is the effect on gas turbine exhaust conditions and how this affects the steam cycle.


Author(s):  
Xiaomo Jiang ◽  
Eduardo Mendoza ◽  
TsungPo Lin

Condition monitoring and diagnostics of a combined cycle gas turbine power plant has become an important tool to improve its availability, reliability, and performance. However, there are two major challenges in the diagnostics of performance degradation and anomaly in a single shaft combined cycle power plant. First, since the gas turbine and steam turbine in such a plant share a common generator, each turbine’s contribution to the total plant power output is not directly measured, but must be accurately estimated to identify the possible causes of plant level degradation. Second, multivariate operational data instrumented from a power plant need to be used in the plant model calibration, power splitting and degradation diagnostics. Sensor data always contains some degree of uncertainty. This adds to the difficulty of both estimation of gas turbine to steam turbine power split and degradation diagnostics. This paper presents an integrated probabilistic methodology for accurate power splitting and the degradation diagnostics of a single shaft combined cycle plant, accounting for uncertainties in the measured data. The method integrates the Bayesian inference approach, thermodynamic physics modeling, and sensed operational data seamlessly. The physics-based thermodynamic heat balance model is first established to model the power plant components and their thermodynamic relationships. The model is calibrated to model the plant performance at the design conditions of its main components. The calibrated model is then employed to simulate the plant performance at various operating conditions. A Bayesian inference method is next developed to determine the power split between the gas turbine and the steam turbine by comparing the measured and expected power outputs at different operation conditions, considering uncertainties in multiple measured variables. The calibrated model and calculated power split are further applied to pinpoint the possible causes at individual components resulting in the plant level degradation. The proposed methodology is demonstrated using operational data from a real-world single shaft combined cycle power plant with a known degradation issue. This study provides an effective probabilistic methodology to accurately split the power for degradation diagnostics of a single shaft combined cycle plant, addressing the uncertainties in multiple measured variables.


Author(s):  
David J. Olsheski ◽  
William W. Schulke

Traditionally commercial marine propulsion needs have been met with direct drive reciprocating prime movers. In order to increase efficiency, simplify installation and maintenance accessibility, and increase cargo / passenger capacity; indirect electric drive gas and steam turbine combined cycle prime movers are being introduced to marine propulsion systems. One such application is the Royal Caribbean Cruise Line (RCCL) Millennium Class ship. This commercial vessel has two aero-derivative gas turbine generator sets with a single waste heat recovery steam turbine generator set. Each is controlled by independent microprocessor based digital control systems. This paper addresses only the gas turbine control system architecture and the unique safety and dynamic features that are integrated into the control system for this application.


2014 ◽  
Vol 492 ◽  
pp. 568-573 ◽  
Author(s):  
Yinka Sofihullahi Sanusi ◽  
Palanichamy Gandhidasan ◽  
Esmail M.A. Mokheimer

Saudi Arabia is blessed with abundant solar energywhichcan be use to meet its ever increasing power requirement. In this regard, the energy analysis and plant performance of integrated solar combined cycle (ISCC) plant with direct steam generation (DSG) was carried out for Dhahran, Saudi Arabia using four representative months of March, June, September and December. The plant consists of 180MW conventional gas turbine plant and two steam turbines of 80MW and 60MW powered by the solar field and gas turbine exhaust. With high insolation during the summer month of June the plant can achieve up to 25% of solar fraction with ISCC plant efficiency of 45% as compared to gas turbine base of 38%.This can however be improved by increasing the number of collectors or/and the use of auxiliary heater .


Author(s):  
A. Hofstädter ◽  
H. U. Frutschi ◽  
H. Haselbacher

Steam injection is a well-known principle for increasing gas turbine efficiency by taking advantage of the relatively high gas turbine exhaust temperatures. Unfortunately, performance is not sufficiently improved compared with alternative bottoming cycles. However, previously investigated supplements to the STIG-principle — such as sequential combustion and consideration of a back pressure steam turbine — led to a remarkable increase in efficiency. The cycle presented in this paper includes a further improvement: The steam, which exits from the back pressure steam turbine at a rather low temperature, is no longer led directly into the combustion chamber. Instead, it reenters the boiler to be further superheated. This modification yields additional improvement of the thermal efficiency due to a significant reduction of fuel consumption. Taking into account the simpler design compared with combined-cycle power plants, the described type of an advanced STIG-cycle (A-STIG) could represent an interesting alternative regarding peak and medium load power plants.


Author(s):  
Hossin Omar ◽  
Mohamed Elmnefi

The Pressurized Fluidized Circulating Bed (PFCB) combined cycle was simulated. The simulations balance the energy between the elements of the unit, which consists of gas turbine cycle and steam turbine cycle. The PFCB is used as a combustor and steam generator at the same time. The simulations were carried out for PFCB combined cycle plant for two cases. In the first case, the simulations were performed for combined cycle with reheat in the steam turbine cycle. While in the second case, the simulations were carried out for the PFCB combined cycle with extra combustor and steam turbine cycle with reheat. For both cases, the effect of steam inlet pressure on the combined cycle efficiency was predicted. It was found that increasing of steam pressure results in increase in the combined cycle thermal efficiency. The effect of the inlet flue gases temperature on the gas turbine and on the combined cycle efficiencies was also predicted. The maximum PFCB combined cycle efficiency occurs at a compression ratio of 18, which is the case of utilizing an extra combustor. The simulations were carried out for only one fuel composition and for a compression ratio ranges between 1 to 40.


Author(s):  
Andrea Passarella ◽  
Gianmario L. Arnulfi

As gas turbine exhaust gases leave the turbine at high temperature, heat recovery is often carried out in a combined heat-and-power system or in the steam section of a combined-cycle plant. An interesting alternative is a mirror cycle, which involves coupling together a direct Brayton top cycle and an inverted Brayton bottom cycle; this results in significantly higher power output and efficiency, though at the expense of added complexity. The research illustrated in the present paper was based on two in-house codes and aimed to analyze different plant configurations, one of which was a heat recovery (regenerative) top cycle with the heat exchanger hot side located between the top and bottom cycle turbo-expanders. The authors call this configuration a distorting mirror, as the hot side may not be at atmospheric pressure. A parametric analysis was carried out in order to optimize plant performance vs. pressure levels. Simulation showed that, at the design point, very good performance is obtained: efficiency close to 0.50 with plant cost (per megawatt) about half vs. combined-cycle plants. An off-design analysis showed that the mirror plant is a little more sensitive to changes in load than a simple Brayton, single-shaft GT.


1979 ◽  
Author(s):  
L. F. Fougere ◽  
H. G. Stewart ◽  
J. Bell

Citizens Utilities Company’s Kauai Electric Division is the electric utility on the Island of Kauai, fourth largest and westernmost as well as northernmost of the Hawaiian Islands. As a result of growing load requirements, additional generating capacity was required that would afford a high level of reliability and operating flexibility and good fuel economy at reasonable capital investment. To meet these requirements, a combined cycle arrangement was completed in 1978 utilizing one existing gas turbine-generator and one new gas turbine-generator, both exhausting to a new heat recovery steam generator which supplies steam to an existing steam turbine-generator. Damper controlled ducting directs exhaust gas from either gas turbine, one at a time, through the heat recovery steam generator. The existing oil-fired steam boiler remains available to power the steam turbine-generator independently or in parallel with the heat recovery steam generator. The gas turbines can operate either in simple cycle as peaking units or in combined cycle, one at a time, as base load units. This arrangement provides excellent operating reliability and flexibility, and the most favorable economics of all generating arrangements for the service required.


Author(s):  
A. Corti ◽  
L. Failli ◽  
D. Fiaschi ◽  
G. Manfrida

Two different power plant configurations based on a Semi-Closed Gas Turbine (SCGT) are analyzed and compared in terms of First and Second Law analysis. SCGT plant configurations allow the application of CO2 separation techniques to gas-turbine based plants and several further potential advantages with respect to present, open-cycle solutions. The first configuration is a second-generation SCGT/CC (Combined Cycle) plant, which includes inter-cooling (IC) between the two compression stages, achieved using spray injection of water condensed in a separation process removing vapor from the flue gases. The second configuration (SCGT/RE) combines compressor inter-cooling with the suppression of the heat recovery steam generator and of the whole bottoming cycle; the heat at gas turbine exhaust is directly used for gas turbine regeneration. The SCGT/CC-IC solution provides good efficiency (about 55%) and specific power output figures, on account of the spray inter-cooling; however, with this configuration the cycle is not able to self-sustain the CO2 removal reactions and amine regeneration process, and needs a substantial external heat input for this purpose. The SCGT/RE solution is mainly attractive from the environmental point of view: in fact, it combines the performance of an advanced gas turbine regenerative cycle (efficiency of about 49%) with the possibility of a self-sustained CO2 removal process. Moreover, the cycle configuration is simplified because the HRSG and the whole bottoming cycle are suppressed, and a potential is left for cogeneration of heat and power.


Sign in / Sign up

Export Citation Format

Share Document