J101034 A numerical study of stability and sound generation of two-degrees-of-freedom air foil

2012 ◽  
Vol 2012 (0) ◽  
pp. _J101034-1-_J101034-3
Author(s):  
Takayuki IIDA ◽  
Mikael A. LANGTHJEM
2004 ◽  
Vol 10 (11) ◽  
pp. 1663-1697 ◽  
Author(s):  
Anil K. Bajaj ◽  
Patricia Davies ◽  
Bappaditya Banerjee

The dynamics of two-degrees-of-freedom dynamical systems with weak quadratic nonlinearities is analyzed in the neighborhood of bifurcation points when the excitation frequency varies slowly through the region of primary resonance. The two modes of vibration are in 1: 2 subharmonic internal resonance. The slowly evolving averaged equations are numerically studied for motions initiated in the vicinity of stationary responses, and observations are made about the nature of responses of the system near the transition from single-mode to coupled-mode solutions (pitchfork points), and near jump and Hopf bifurcations in the coupled-mode solutions. An analytical technique based on the dynamic bifurcation theory is developed to explain the numerical observations for passage through the bifurcations. A numerical study is carried out to determine the effects of system parameters on the dynamics near the pitchfork bifurcation points and results are compared with analytical and numerical descriptions of dynamics.


1996 ◽  
Vol 18 (2) ◽  
pp. 43-48
Author(s):  
Tran Van Tuan ◽  
Do Sanh ◽  
Luu Duc Thach

In the paper it is introduced a method for studying dynamics of beating-vibrators by means of digital calculation with the help of the machine in accordance with the needs by the helps of an available auto regulation system operating with high reability.


2020 ◽  
Vol 53 (2) ◽  
pp. 14450-14455
Author(s):  
Wolfgang Degel ◽  
Stefan Lupberger ◽  
Dirk Odenthal ◽  
Naim Bajcinca

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1015
Author(s):  
Mingfei Huang ◽  
Yongting Deng ◽  
Hongwen Li ◽  
Jing Liu ◽  
Meng Shao ◽  
...  

This paper concentrates on a robust resonant control strategy of a permanent magnet synchronous motor (PMSM) for electric drivers with model uncertainties and external disturbances to improve the control performance of the current loop. Firstly, to reduce the torque ripple of PMSM, the resonant controller with fractional order (FO) calculus is introduced. Then, a robust two degrees-of-freedom (Robust-TDOF) control strategy was designed based on the modified resonant controller. Finally, by combining the two control methods, this study proposes an enhanced Robust-TDOF regulation method, named as the robust two degrees-of-freedom resonant controller (Robust-TDOFR), to guarantee the robustness of model uncertainty and to further improve the performance with minimized periodic torque ripples. Meanwhile, a tuning method was constructed followed by stability and robust stability analysis. Furthermore, the proposed Robust-TDOFR control method was applied in the current loop of a PMSM to suppress the periodic current harmonics caused by non-ideal factors of inverter and current measurement errors. Finally, simulations and experiments were performed to validate our control strategy. The simulation and experimental results showed that the THDs (total harmonic distortion) of phase current decreased to a level of 0.69% and 5.79% in the two testing environments.


Sign in / Sign up

Export Citation Format

Share Document