The three-dimensional kinematics analysis of the shoulder joint using the image matching method with image correlation

2016 ◽  
Vol 2016 (0) ◽  
pp. S0220204
Author(s):  
健 下戸 ◽  
Takeshi SHIMOTO ◽  
Yoshitaka SHIRAISHI ◽  
Yifeng WANG ◽  
Satoru IKEBE ◽  
...  
2015 ◽  
Author(s):  
Chunsen Zhang ◽  
Zhenguo Qiu ◽  
Shihuan Zhu ◽  
Xiqi Wang ◽  
Xiaolei Xu ◽  
...  

2021 ◽  
Vol 13 (17) ◽  
pp. 3535
Author(s):  
Zhongli Fan ◽  
Li Zhang ◽  
Yuxuan Liu ◽  
Qingdong Wang ◽  
Sisi Zlatanova

Accurate geopositioning of optical satellite imagery is a fundamental step for many photogrammetric applications. Considering the imaging principle and data processing manner, SAR satellites can achieve high geopositioning accuracy. Therefore, SAR data can be a reliable source for providing control information in the orientation of optical satellite images. This paper proposes a practical solution for an accurate orientation of optical satellite images using SAR reference images to take advantage of the merits of SAR data. Firstly, we propose an accurate and robust multimodal image matching method to match the SAR and optical satellite images. This approach includes the development of a new structural-based multimodal applicable feature descriptor that employs angle-weighted oriented gradients (AWOGs) and the utilization of a three-dimensional phase correlation similarity measure. Secondly, we put forward a general optical satellite imagery orientation framework based on multiple SAR reference images, which uses the matches of the SAR and optical satellite images as virtual control points. A large number of experiments not only demonstrate the superiority of the proposed matching method compared to the state-of-the-art methods but also prove the effectiveness of the proposed orientation framework. In particular, the matching performance is improved by about 17% compared with the latest multimodal image matching method, namely, CFOG, and the geopositioning accuracy of optical satellite images is improved, from more than 200 to around 8 m.


2014 ◽  
Vol 32 (5) ◽  
pp. 619-626 ◽  
Author(s):  
Masami Ishimaru ◽  
Yoshitaka Shiraishi ◽  
Satoru Ikebe ◽  
Hidehiko Higaki ◽  
Kazunori Hino ◽  
...  

2020 ◽  
Vol 9 (6) ◽  
pp. 347
Author(s):  
Jingxue Wang ◽  
Ning Zhang ◽  
Xiangqian Wu ◽  
Weixi Wang

Reliable image matching is the basis of image-based three-dimensional (3D) reconstruction. This study presents a quasi-dense matching method based on triangulation constraint and propagation as applied to different types of close-range image matching, such as illumination change, large viewpoint, and scale change. The method begins from a set of sparse matched points that are used to construct an initial Delaunay triangulation. Edge-to-edge matching propagation is then conducted for the point matching. Two types of matching primitives from the edges of triangles with areas larger than a given threshold in the reference image, that is, the midpoints of edges and the intersections between the edges and extracted line segments, are used for the matching. A hierarchical matching strategy is adopted for the above-mentioned primitive matching. The points that cannot be matched in the first stage, specifically those that failed in a gradient orientation descriptor similarity constraint, are further matched in the second stage. The second stage combines the descriptor and the Mahalanobis distance constraints, and the optimal matching subpixel is determined according to an overall similarity score defined for the multiple constraints with different weights. Subsequently, the triangulation is updated using the newly matched points, and the aforementioned matching is repeated iteratively until no new matching points are generated. Twelve sets of close-range images are considered for the experiment. Results reveal that the proposed method has high robustness for different images and can obtain reliable matching results.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2011 ◽  
Vol 101-102 ◽  
pp. 279-282 ◽  
Author(s):  
Jun Xie ◽  
Jun Zhang ◽  
Jie Li

Based on the characteristics and the common massage manipulations of Chinese medical massage, a practical series mechanical arm was presented to act the manipulations with the parallel executive mechanism. Forward kinematics was solved by the Denavit-Hartenberg transformation after the kinematics model of the arm was established. And the three-dimensional model of the arm was created by Pro/E and was imported into ADAMS for the kinematics analysis. The results indicated that the common massage manipulations could be simulated by the arm correctly and flexibly, and it verified the accuracy of the mechanism design of the arm.


Sign in / Sign up

Export Citation Format

Share Document