Effects of Laser Peening without Coating on Plane Bending Fatigue Properties of Friction StirWeldedA2024 Joints

2017 ◽  
Vol 2017 (0) ◽  
pp. G0300402
Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1716
Author(s):  
Yuji Sano ◽  
Kiyotaka Masaki ◽  
Yoshio Mizuta ◽  
Satoshi Tamaki ◽  
Tomonao Hosokai ◽  
...  

Laser peening without coating (LPwC) using a palmtop-sized microchip laser has improved the residual stresses (RSs) and fatigue properties of A7075 aluminum alloy. Laser pulses with a wavelength of 1.06 μm and duration of 1.3 ns from a Q-switched Nd:YAG microchip laser were focused onto A7075 aluminum alloy samples covered with water. X-ray diffraction revealed compressive RSs on the surface after irradiation using laser pulses with an energy of 1.7 mJ, spot diameter of 0.3 mm, and density of 100–1600 pulse/mm2. The effects were evident to depths of a few hundred micrometers and the maximum compressive RS was close to the yield strength. Rotation-bending fatigue experiments revealed that LPwC with a pulse energy of 1.7 mJ significantly prolonged the fatigue life and increased the fatigue strength by about 100 MPa with 107 fatigue cycles. The microchip laser used in this study is small enough to fit in the hand or be mounted on a robot arm. The results may lead to the development of tools that extend the service life of various metal parts and structures, especially outdoors where conventional lasers are difficult to apply.


2011 ◽  
Vol 674 ◽  
pp. 213-218 ◽  
Author(s):  
Hisaaki Tobushi ◽  
K. Kitamura ◽  
Yukiharu Yoshimi ◽  
K. Miyamoto ◽  
K. Mitsui

In order to develop a brain spatula or a brain retractor made of a shape memory alloy (SMA), the bending characteristics of the brain spatula of TiNi SMA made by the precision casting were discussed based on the tensile deformation properties of the existing copper and the TiNi rolled-SMA. The fatigue properties of both materials were also investigated by the plane-bending fatigue test. The results obtained can be summarized as follows. (1) The modulus of elasticity and the yield stress for the cast and rolled SMAs are lower than those for the copper. Therefore, the conventional rolled-SMA spatula and the new cast-SMA spatula can be bent easily compared to the existing copper-brain spatula. (2) With respect to the alternating- and pulsating-plane bending fatigue, the fatigue life of both the copper and the SMAs in the region of low-cycle fatigue is expressed by a power function of the maximum bending strain. The fatigue life of the conventional rolled SMA and the new cast SMA is longer than that of the existing copper. The fatigue life of the new cast and rolled SMAs in the pulsating-plane bending is longer than that in the alternating-plane bending. (3) The fatigue life of the rolled-SMA and the cast SMA for alternating- and pulsating-plane bendings can be expressed by the unified relationship with a power function of the dissipated work.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 728 ◽  
Author(s):  
Enrico Troiani ◽  
Nicola Zavatta

Laser shock peening has established itself as an effective surface treatment to enhance the fatigue properties of metallic materials. Although a number of works have dealt with the formation of residual stresses, and their consequent effects on the fatigue behavior, the influence of material geometry on the peening process has not been widely addressed. In this paper, Laser Peening without Coating (LPwC) is applied at the surface of a notch in specimens made of a 6082-T6 aluminum alloy. The treated specimens are tested by three-point bending fatigue tests, and their fatigue life is compared to that of untreated samples with an identical geometry. The fatigue life of the treated specimens is found to be 1.7 to 3.3 times longer. Brinell hardness measurements evidence an increase in the surface hardness of about 50%, following the treatment. The material response to peening is modelled by a finite element model, and the compressive residual stresses are computed accordingly. Stresses as high as −210 MPa are present at the notch. The ratio between the notch curvature and the laser spot radius is proposed as a parameter to evaluate the influence of the notch.


2013 ◽  
Vol 62 (5) ◽  
pp. 297-304 ◽  
Author(s):  
Kiyotaka MASAKI ◽  
Youhei KAMESHIMA ◽  
Noriyuki HISAMORI ◽  
Yuji SANO ◽  
Koichi AKITA ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 152 ◽  
Author(s):  
Yuji Sano

This article summarizes the development of laser peening without coating (LPwC) during the recent quarter century. In the mid-1990s, the study of LPwC was initiated in Japan. The objective at that time was to mitigate stress corrosion cracking (SCC) of structural components in operating nuclear power reactors (NPRs) by inducing compressive residual stresses (RSs) on the surface of susceptible components. Since the components in NPRs are radioactive and cooled underwater, full-remote operation must be attained by using lasers of water-penetrable wavelength without any surface preparation. Compressive RS was obtained on the top-surface by reducing pulse energy less than 300 mJ and pulse duration less than 10 ns, and increasing pulse density (number of pulses irradiated on unit area). Since 1999, LPwC has been applied in NPRs as preventive maintenance against SCC using frequency-doubled Q-switched Nd:YAG lasers (λ = 532 nm). To extend the applicability, fiber-delivery of intense laser pulses was developed in parallel and has been used in NPRs since 2002. Early first decade of the 2000s, the effect extending fatigue life was demonstrated even if LPwC increased surface roughness of the components. Several years ago, it was confirmed that 10 to 20 mJ pulse energy is enough to enhance fatigue properties of weld joints of a structural steel. Considering such advances, the development of 20 mJ-class palmtop-sized handheld lasers was initiated in 2014 in a five-year national program, ImPACT under the cabinet office of the Japanese government. Such efforts would pave further applications of LPwC, for example maintenance of infrastructure in the field, beyond the horizons of the present laser systems.


Sign in / Sign up

Export Citation Format

Share Document