Improvement of Velocity Fluctuation Measurement in a Turbulent Boundary Layer Using a Micro Flow-Direction and Velocity Sensor

2019 ◽  
Vol 2019 (0) ◽  
pp. J05110P
Author(s):  
Marie TSUKAMOTO ◽  
Misa OGAWA ◽  
Tomoya HOURA ◽  
Masato TAGAWA
1997 ◽  
Vol 119 (2) ◽  
pp. 277-280 ◽  
Author(s):  
B. A. Singer

Models for the distribution of the wall-pressure under a turbulent boundary layer often estimate the coherence of the cross-spectral density in terms of a product of two coherence functions. One such function describes the coherence as a function of separation distance in the mean-flow direction, the other function describes the coherence in the cross-stream direction. Analysis of data from a large-eddy simulation of a turbulent boundary layer reveals that this approximation dramatically underpredicts the coherence for separation directions that are neither aligned with nor perpendicular to the mean-flow direction. These models fail even when the coherence functions in the directions parallel and perpendicular to the mean flow are known exactly. A new approach for combining the parallel and perpendicular coherence functions is presented. The new approach results in vastly improved approximations for the coherence.


1999 ◽  
Vol 395 ◽  
pp. 271-294 ◽  
Author(s):  
L. DJENIDI ◽  
R. ELAVARASAN ◽  
R. A. ANTONIA

Laser-induced uorescence (LIF) and laser Doppler velocimetry (LDV) are used to explore the structure of a turbulent boundary layer over a wall made up of two-dimensional square cavities placed transversely to the flow direction. There is strong evidence of occurrence of outflows of fluid from the cavities as well as inflows into the cavities. These events occur in a pseudo-random manner and are closely associated with the passage of near-wall quasi-streamwise vortices. These vortices and the associated low-speed streaks are similar to those found in a turbulent boundary layer over a smooth wall. It is conjectured that outflows play an important role in maintaining the level of turbulent energy in the layer and enhancing the approach towards self-preservation. Relative to a smooth wall layer, there is a discernible increase in the magnitudes of all the Reynolds stresses and a smaller streamwise variation of the local skin friction coefficient. A local maximum in the Reynolds shear stress is observed in the shear layers over the cavities.


1997 ◽  
Vol 338 ◽  
pp. 203-230 ◽  
Author(s):  
ARGYRIS G. PANARAS

The physical reasons for the diffculty in predicting accurately strong swept-shock-wave/turbulent-boundary-layer interactions are investigated. A well-documented sharp-fin/plate flow has been selected as the main test case for analysis. The selected flow is calculated by applying a version of the Baldwin–Lomax turbulence model, which is known to provide reliable results in flows characterized by the appearance of crossflow vortices. After the validation of the results, by comparison with appropriate experimental data, the test case flow is studied by means of stream surfaces which start at the inflow plane, within the undisturbed boundary layer, and which are initially parallel to the plate. Each of these surfaces has been represented by a number of streamlines. Calculation of the spatial evolution of some selected stream surfaces revealed that the inner layers of the undisturbed boundary layer, which are composed of turbulent air, wind around the core of the vortex. However, the outer layers, which are composed of low-turbulence air, fold over the vortex and at the reattachment region penetrate into the separation bubble forming a low-turbulence tongue, which lies along the plate, underneath the vortex. The conical vortex at its initial stage of development is completely composed of turbulent air, but gradually, as it grows linearly in the flow direction, the low-turbulence tongue is formed. Also the tongue grows in the flow direction and penetrates further into the separation region. When it reaches the expansion region inboard of the primary vortex, the secondary vortex starts to be formed at its tip. Examination of additional test cases indicated that the turbulence level of the elongated tongue decreases if the interaction strength increases. The existence of the low-turbulence tongue in strong swept-shock-wave/turbulent-boundary-layer interactions creates a mixed-type separation bubble: turbulent in the region of the separation line and almost laminar between the secondary vortex and the reattachment line. This type of separation cannot be simulated accurately with the currently used algebraic turbulence models, because the basic relations of these models are based on the physics of two-dimensional flows, whereas in a separation bubble the whole recirculation region is turbulent. For improving the accuracy of the existing algebraic turbulence models in predicting swept-shock-wave/turbulent-boundary-layer interactions, it is necessary to develop new equations for the calculation of the eddy viscosity in the separation region, which will consider the mixed-flow character of the conical vortex.


1958 ◽  
Vol 3 (4) ◽  
pp. 344-356 ◽  
Author(s):  
A. J. Favre ◽  
J. J. Gaviglio ◽  
R. J. Dumas

This paper describes the results of further experimental investigation of the turbulent boundary layer with zero pressure gradient. Measurements of autocorrelation and of space-time double correlation have been made respectively with single hot-wires and with two hot-wires with the separation vector in any direction. Space-time correlations reach a maximum for some optimum delay. In the case of two points set on a line orthogonal to the plate, the optimum delay Ti is not zero. In the general case it is equal to the corresponding delay Ti, increased by compensating delay for translation with the mean flow. Taylor's hypothesis may be applied to the boundary layer at distances from the wall greater than 3% of the layer thickness. Space-time isocorrelation surfaces obtained with optimum delay have a large aspect ratio in the mean flow direction, even if they are relative to a point close to the wall (0·03δ); the correlations along the mean flow then retain high values on account of the large scale of the turbulence.


2003 ◽  
Vol 125 (6) ◽  
pp. 1006-1015 ◽  
Author(s):  
Gregory S. Rixon ◽  
Hamid Johari

The development of a vortex generator jet within a turbulent boundary layer was studied by the particle image velocimetry method. Jet velocities ranging from one to three times greater than the freestream velocity were examined. The jet was pitched 45 deg and skewed 90 deg with respect to the surface and flow direction, respectively. The velocity field in planes normal to the freestream was measured at four stations downstream of the jet exit. The jet created a pair of streamwise vortices, one of which was stronger and dominated the flow field. The circulation, peak vorticity, and wall-normal position of the primary vortex increased linearly with the jet velocity. The circulation and peak vorticity decreased exponentially with the distance from the jet source for the jet-to-freestream velocity ratios of 2 and 3. The wandering of the streamwise vortex can be as much as ±30% of the local boundary layer thickness at the farthest measurement station.


1987 ◽  
Vol 109 (3) ◽  
pp. 405-412 ◽  
Author(s):  
H. Pfeil ◽  
M. Go¨ing

This paper presents boundary layer measurements in a diffuser behind a one-stage axial compressor for the case of nearly axial outlet flow direction from the blades. According to the results, three-dimensional effects caused by the compressor blading have a great influence on the character and development of the turbulent boundary layer and must be included in methods to predict the diffuser flow.


2004 ◽  
Vol 126 (5) ◽  
pp. 843-848 ◽  
Author(s):  
G. Hetsroni ◽  
I. Tiselj and ◽  
R. Bergant ◽  
A. Mosyak and ◽  
E. Pogrebnyak

A numerical investigation of the temperature field in a turbulent flume is presented. We consider the effect of the Prandtl number on the convection velocity of temperature fluctuations in a turbulent boundary layer, and focus also on the effect of the Prandtl number on the connection between the velocity and the temperature fluctuations. Close to the wall, y+<2, convection velocities of the temperature fluctuations decrease with an increase in the Prandtl number, i.e., the scale dependence becomes significantly important. In the region y+<2 the relation of the convection velocity of the temperature fluctuation to that of the velocity fluctuation may be expressed as UcT+=Ucu+Pr−1/3 and Ucq+=Ucu+Pr−1/2 for isothermal and isoflux wall boundary condition, respectively.


1997 ◽  
Vol 351 ◽  
pp. 253-288 ◽  
Author(s):  
DOUGLAS R. SMITH ◽  
ALEXANDER J. SMITS

Experiments were conducted to investigate the response of a high-Reynolds-number turbulent boundary layer in a supersonic flow to the perturbation presented by a forward-facing ramp. Two ramps were used: one with sharp corners, the other with rounded corners having radii of curvature equal to 15 initial boundary layer thicknesses. The flow was turned through 20° in each of the compressions and expansions. Hence, there was no net change in the flow direction over the ramps and only a small change in free-stream conditions due to the entropy increase across relatively weak shocks. The two experiments gave similar results. In the middle of the relaxing boundary layer, the streamwise Reynolds stress undershot the undisturbed levels and exhibited a response similar to that observed in subsonic boundary layer flows recovering from an impulse of streamline curvature (Smits, Young & Bradshaw 1979b). The turbulent shear stress vanished throughout most of the boundary layer, and an overall destruction of the turbulence production mechanisms was apparent as the boundary layer exhibited a slow recovery.


1986 ◽  
Author(s):  
H. Pfeil ◽  
M. Göing

The paper presents boundary layer measurements in a diffuser behind a one-stage axial-compressor for the case of nearly axial outlet flow-direction from the blades. According to the results, three-dimensional effects caused by the compressor-blading have a great influence on the character and development of the turbulent boundary layer and must be included in methods to predict the diffuser flow.


Sign in / Sign up

Export Citation Format

Share Document