Flow-Induced Vibration of a Circular Cylinder : Water Tunnel Tests

2000 ◽  
Vol 2000.1 (0) ◽  
pp. 839-840
Author(s):  
Atsushi OKAJIMA ◽  
Hidekazu ONO
2001 ◽  
Vol 124 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Atsushi Okajima ◽  
Takashi Kosugi ◽  
Akira Nakamura

Flow-induced in-line oscillation of a circular cylinder has been experimentally studied by free-oscillation tests in a water tunnel. Response amplitudes of a circular cylinder have been measured for determining the values of the reduced mass-damping parameter of less than 1.0. In the free-oscillation tests, the cylinder models were spring-mounted so as to oscillate as a two-dimensional rigid cylinder in the water tunnel. Two types of excitation phenomena appear at approximately half of the resonance flow velocity. The response amplitudes are sensitive to the reduced mass-damping parameter during the in-line oscillation of the first excitation region with a symmetric vortex street, and the alternate vortices are periodically shed, locking-in with the vibration of the cylinder in the second excitation region. A hysteresis phenomenon is observed to appear in the in-line oscillation of the latter region. A cantilevered circular cylinder with a finite length aspect ratio of 10 was tested for fluid-elastic characteristics of the cylinder, and these characteristics are found to be quite different from those of the two-dimensional cylinder, having only one wide velocity region of excitation. The results of this study are providing important supporting data for the recent publication “Guideline for Evaluation of Flow-Induced Vibration of a Cylindrical Structure in a Pipe,” by the Japan Society of Mechanical Engineers, Standard JSME S012-1998.


Author(s):  
Koki Yamada ◽  
Yuga Shigeyoshi ◽  
Shuangjing Chen ◽  
Yoshiki Nishi

Abstract Purpose This study elucidated the effect of an inclined spring arrangement on the flow-induced vibration of a circular cylinder to understand if the effect enhances the harnessing of the energy of fluid flows. Method An experiment was conducted on a circulating water channel. A circular cylinder was partially submerged. It was elastically supported by two springs whose longitudinal directions were varied. With the speed of the water flow varied, the vibrations of the circular cylinder were measured. The measured vibrations were interpreted by la linear dynamic model. Results and discussion In a few cases, a jump in response amplitudes from zero to the maximum was observed with the spring inclination at reduced velocities of 6 to 7, whereas gradually increasing response amplitudes were observed in other cases. The inclined spring arrangement achieved greater velocity amplitudes than in cases without spring inclination. A theoretical evaluation of the measured responses indicates that the effect of the inclined springs was caused by geometric nonlinearity; the effect would be more prominent by employing a longer moment lever.


2015 ◽  
Vol 24 (3) ◽  
pp. 109-114 ◽  
Author(s):  
Ji Soo Ha ◽  
Boo Youn Lee ◽  
Sung Hun Shim

2018 ◽  
Vol 151 ◽  
pp. 298-307 ◽  
Author(s):  
Sangil Kim ◽  
Md Mahbub Alam ◽  
Dilip Kumar Maiti

Author(s):  
Nadeem Ahmed Sheikh ◽  
M. Afzaal Malik ◽  
Arshad Hussain Qureshi ◽  
M. Anwar Khan ◽  
Shahab Khushnood

Flow past a blunt body, such as a circular cylinder, usually experiences boundary layer separation and very strong flow oscillations in the wake region behind the body at a discrete frequency that is correlated to the Reynolds number of the flow. The periodic nature of the vortex shedding phenomenon can sometimes lead to unwanted structural vibrations. The effect of vibrating instability of a single cylinder is investigated in a uniform flow using the power of computational methods. Fluid structure coupling procedure predicts the fluid forces responsible for structural vibrations. An implicit approach to the solution of the unsteady two-dimensional Navier-Stokes equations is used for computation of flow parameters. Calculations are performed in parallel using a domain re-meshing/deforming technique with efficient communication requirements. Results for the unsteady shedding flow behind a circular cylinder are presented with experimental comparisons, showing the feasibility of accurate, efficient, time-dependent estimation of shedding frequency and resulting vibrations.


Sign in / Sign up

Export Citation Format

Share Document