1919 Behavior of Synthetic Jet in Cross Flow at Low Reynolds Number : Three-dimensional Measurement Using Stereo-PIV

2008 ◽  
Vol 2008.2 (0) ◽  
pp. 237-238
Author(s):  
Toru Iai ◽  
Koichi Inose ◽  
Masashi Higashiura ◽  
Masahiro Motosuke ◽  
Shinji Honami
2010 ◽  
Vol 5 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Toru IAI ◽  
Masahiro MOTOSUKE ◽  
Shinji HONAMI

Author(s):  
Masashi Higashiura ◽  
Koichi Inose ◽  
Masahiro Motosuke ◽  
Shinji Honami

The present paper describes a synthetic jet interaction with the cross flow in low Reynolds number condition by flow visualization and the wall static pressure measurements. The primary focus of the current study is to examine the possibility on the interaction of the synthetic jet with the cross flow in low Reynolds number viscous dominant flow. The low bulk velocity of the cross flow is set in a small scale of the wind tunnel with a high aspect ratio. A wide range of Reynolds number based on the tunnel height and the bulk velocity is covered. The flow visualization at Reynolds number of 1,000 is conducted in X-Y and Y-Z planes to clarify the development of the interaction process in the downstream. Both the time averaged and phase averaged wall static pressure were obtained downstream of the jet injection. The synthetic jet has a diameter of 0.5 mm and a frequency of 100 to 400 Hz. The penetration of the jet in the cross flow depends on the jet velocity ratio, and the deepest penetration occurs at the phase of π/2 at the highest jet velocity ratio. The counter rotating longitudinal vortex pair is generated even in low Reynolds number and can be observed at 100d downstream from the injection. The vortex pair shows the up-wash motion at the center of the jet core and the down-wash motion at the outsides of the jet. For the synthetic jet in cross flow, the fluctuated wall static pressure is increased, and the wall static pressure has similar frequency to the synthetic jet.


1997 ◽  
Vol 08 (04) ◽  
pp. 985-997 ◽  
Author(s):  
Dewei Qi

The translation and rotation of non-spherical particles, such as ellipsoidal, cylindric or disk-like pigment particles, in a Couette flow system similar to a blade coating system in the paper industry6 have been successfully simulated by using the lattice-Boltzmann method combined with Newtonian dynamic simulations. Hydrodynamic forces and torques are obtained by the use of boundary conditions which match the moving surface of solid particles. Then Euler equations have been integrated to include three-dimensional rotations of the suspensions by using four quaternion parameters as generalized coordinates. The three-dimensional rotations have been clearly observed. Consequently, the motion of the particles suspended in fluids of both low-Reynolds-number and finite-Reynolds-number, up to several hundreds, has been studied. It appears that the 3D translation and rotation of the non-spherical particles are more clearly observed in a high-Reynolds-number fluid than in a low-Reynolds-number fluid.


1962 ◽  
Vol 14 (2) ◽  
pp. 284-304 ◽  
Author(s):  
F. P. Bretherton

According to Jeffery (1923) the axis of an isolated rigid neutrally buoyant ellipsoid of revolution in a uniform simple shear at low Reynolds number moves in one of a family of closed periodic orbits, the centre of the particle moving with the velocity of the undisturbed fluid at that point. The present work is a theoretical investigation of how far the orbit of a particle of more general shape in a non-uniform shear in the presence of rigid boundaries may be expected to be qualitatively similar. Inertial and non-Newtonian effects are entirely neglected.The orientation of the axis of almost any body of revolution is a periodic function of time in any unidirectional flow, and also in a Couette viscometer. This is also true if there is a gravitational force on the particle in the direction of the streamlines. There is no lateral drift. On the other hand, certain extreme shapes, including some bodies of revolution, will assume one of two orientations and migrate to the bounding surfaces or to the centre of the flow. In any constant slightly three-dimensional uniform shear any body of revolution will ultimately assume a preferred orientation.


2016 ◽  
Vol 28 (3) ◽  
pp. 273-285
Author(s):  
Katsuya Hirata ◽  
◽  
Ryo Nozawa ◽  
Shogo Kondo ◽  
Kazuki Onishi ◽  
...  

[abstFig src='/00280003/02.jpg' width=""300"" text='Iso-Q surfaces of very-slow flow past an iNACA0015' ] The airfoil is often used as the elemental device for flying/swimming robots, determining its basic performances. However, most of the aerodynamic characteristics of the airfoil have been investigated at Reynolds numbers Re’s more than 106. On the other hand, our knowledge is not enough in low Reynolds-number ranges, in spite of the recent miniaturisation of robots. In the present study, referring to our previous findings (Hirata et al., 2011), we numerically examine three kinds of high-performance airfoils proposed for very-low Reynolds numbers; namely, an iNACA0015 (the NACA0015 placed back to front), an FPBi (a flat plate blended with iNACA0015 as its upper half) and an FPBN (a flat plate blended with the NACA0015 as its upper half), in comparison with such basic airfoils as a NACA0015 and an FP (a flat plate), at a Reynolds number Re = 1.0 × 102 using two- and three-dimensional computations. As a result, the FPBi shows the best performance among the five kinds of airfoils.


Sign in / Sign up

Export Citation Format

Share Document