J0202-1-5 Numerical analysis of stress waves in a cell by underwater shock wave

2010 ◽  
Vol 2010.6 (0) ◽  
pp. 145-146
Author(s):  
Norikazu ISHIMATSU ◽  
Masaaki TAMAGAWA
2007 ◽  
Vol 566 ◽  
pp. 339-344 ◽  
Author(s):  
Young Kook Kim ◽  
Kazuyuki Hokamoto ◽  
Shigeru Itoh

In order to achieve an optimal design of shock compaction device, various designs of parts are attempted. For the height of water container that creates an underwater shock wave and a reflected wave, a characteristic of underwater shock wave is evaluated by means of numerical analysis. It is found that the underwater shock wave and the reflected wave became one wave with higher shock pressure in the case of water container (height 21.5 mm). Also, the evaluation for a powder container is experimentally tried in consideration of reuse.


Author(s):  
Kazuhiro Kawano ◽  
Young Kook Kim ◽  
Hideki Hamashima ◽  
Shigeru Itoh

In order to consolidate metal powders, the present investigation uses a shock wave derived from the detonation of an explosive and it’s called a shock compaction method. In the present investigation, we employed an ultra-high pressure generation device in order to generate underwater shock wave. The underwater shock wave is derived from the detonation wave in a water container and after that underwater shock wave is converged in the central axis. Finally, the high pressure of underwater shock wave is uniformly impinged on the powders. In case of experimental data that is measured by manganin gauge, the peak pressure of underwater shock wave is 16.8GPa, the result of numerical analysis is 17.9GPa. Considering for the measurement error (1GPa), it seems to be good agreement between the result of numerical analysis and experiment. Nd-Fe-B magnetic material powders are tried to consolidate using the assembly under optional temperatures by heating system and the samples recovered under different conditions were examined in terms of magnetic properties.


2001 ◽  
Vol 123 (4) ◽  
pp. 486-492 ◽  
Author(s):  
Hirofumi Iyama ◽  
Akio Kira ◽  
Masahiro Fujita ◽  
Shiro Kubota ◽  
Kazuyuki Hokamoto ◽  
...  

In this paper, we propose a new explosive bonding method for bonding materials by using the underwater shock wave from the explosion of explosives in water. This method is especially suitable to bond the materials with thin thickness and largely dissimilar property. In bonding those materials, the shock pressure and the moving velocity of shock wave on the flyer plate should be precisely managed to achieve an optimum bonding conditions. In this method, the bonding conditions can be controlled by varying of the space distance between the explosive and the flyer plate or by inclining the explosive charge with the flyer plate. We made the experiment of this technique bond the amorphous film with the steel plate. A satisfactory result was gained. At the same time, numerical analysis was performed to investigate the bonding conditions. The calculated deformation of the flyer plate by the action of underwater shock wave was compared with the experimental recordings by high-speed camera under the same conditions. The comparison shows that the numerical analysis is of good reliability on the prediction of the experimental result. Furthermore, the numerical simulation also gives the deformations of the flyer and the base plate, and the pressure and its variation during the collision process.


Author(s):  
Masahiko Otsuka ◽  
Toshiaki Watanabe ◽  
Shigeru Itoh

In this study, it has aimed at the design of the pressure vessel where an underwater shock wave is applied to food efficiently. This study aims at the desigh of a pressure vessel in which the underwater shock wave generated by the underwater explosion of detonating fuse was experimentally investigated by the optical observation and the pressure measurement. Therefore the pressure vessel is designed so that suitable pressure may apply on food. This designed vessel is evaluated by the numerical analysis that used LS-DYNA3D. The interaction of the underwater shock wave, the incident wave and the reflected wave are investigated by the numerical analysis. The agreement between the experimental results and the numerical analysis was found to be good.


2011 ◽  
Vol 673 ◽  
pp. 265-270 ◽  
Author(s):  
Akihisa Mori ◽  
Li Qun Ruan ◽  
Kazumasa Shiramoto ◽  
Masahiro Fujita

Detonating code is a flexible code with an explosive core. It is used to transmit the ignition of explosives with high detonation velocity in the range of 5.5 to 7 km/s. However, it is difficult to use detonating code for the explosive welding of common metals since the horizontal point velocity usually exceeds the sound velocity. Hence, in the present work, a new method using underwater shock wave generated by the detonation of detonating code was tried. The details of the experimental parameters and the results are presented. From the results it is observed that the above technique is suitable to weld thin metal plates with relatively less explosives.


1999 ◽  
Vol 85 (1-3) ◽  
pp. 48-51 ◽  
Author(s):  
Y Nadamitsu ◽  
Z.Y Liu ◽  
M Fujita ◽  
S Itoh

Sign in / Sign up

Export Citation Format

Share Document