OS1504 Observation of Crack Propagation Process under Rolling Contact Fatigue by using Synchrotron Radiation μCT and Compact Rolling Contact Fatigue Testing Machine

2013 ◽  
Vol 2013 (0) ◽  
pp. _OS1504-1_-_OS1504-3_
Author(s):  
Kazuya SATO ◽  
Daiki SHIOZAWA ◽  
Yutaka NEISHI ◽  
Taizo MAKINO ◽  
Yoshikazu NAKAI ◽  
...  
Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


Author(s):  
T. Makino ◽  
Y. Neishi ◽  
D. Shiozawa ◽  
Y. Neishi ◽  
D. Shiozawa ◽  
...  

 The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF) crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT) imaging were conducted. In the case of the defect with the 15 ?m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE) analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.


2002 ◽  
Vol 124 (4) ◽  
pp. 680-688 ◽  
Author(s):  
M. C. Dubourg ◽  
V. Lamacq

Complex crack networks are initiated in rails under Rolling Contact Fatigue. This paper attempts to model the RCF crack propagation with a particular emphasis on the branching conditions and the parameters that play a role on them. The numerical tool proposed rests on the combination of the author’s RCF model, Hourlier and Pineau’s criterion for the branch prediction and experimental data and the corresponding models for fatigue crack extension that are derived from a Joint European project. Parametric studies on the influence of (i) residual stresses, (ii) both interfacial crack and wheel/rail contact frictional effects, (iii) neighboring crack are conducted to reach a better understanding of the RC crack propagation behavior and more particularly the branch conditions, i.e., the length of the primary crack prior to branch formation and the branch direction.


2018 ◽  
Vol 165 ◽  
pp. 11002
Author(s):  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
Shoichi Kikuch ◽  
Hitoshi Saito ◽  
Takashi Nishina ◽  
...  

The flaking failure in rolling contact fatigue (RCF) results from crack initiation and propagation has been believed to originate from non-metallic inclusions located beneath the surface. With conventional microscopies, however, damage process in the internal region of materials could not be observed, then RCF crack initiation and propagation behaviours were observed by using synchrotron radiation computed laminography (SRCL) in the brightest synchrotron facility in Japan, and the effect of the inclusion orientation on the RCF property was examined. In our previous studies, crack initiation and propagation behaviours caused by extended MnS inclusions distributed in depth or transverse (width) direction was observed by the SRCL. In the present study, the fracture mechanism under RCF was discussed on specimens with MnS inclusions distributed in the rolling direction. As a result, vertical cracks were initiated on the surface, parallel to the ball-rolling direction in specimens. The crack propagation direction was then changed perpendicular to the rolling direction. Thereafter, similar with our previous studies, vertical cracks caused the horizontal cracks beneath the surface, when the vertical cracks reached to a critical length. The ratio of the vertical crack initiation life to the flaking life was higher than specimens with other inclusion orientation.


Sign in / Sign up

Export Citation Format

Share Document