Deformation of a liquid film surface due to attractive force from an opposed cylindrical surface

Author(s):  
Kazuki Hisamitsu ◽  
Fumihiro Saeki
2021 ◽  
pp. 1-10
Author(s):  
Zhiyue Zhao ◽  
Ning Zhao ◽  
Lide Fang ◽  
Xiaoting Li

During the long-distance transportation of wet-gas, the dominant frequency is of great significance for the study of pipeline fatigue and damage, and the safety production. Therefore, the theoretical and experimental researches for dominant frequency are carried out increasingly. However, most of the current prediction correlation of dominant frequency are mainly applicable to atmospheric pressure conditions (0.1 MPa), and the prediction accuracy is not accurate enough. The paper obtains the time series signal of liquid film thickness by near-infrared (NIR) sensor, and then calculates the wave frequency by the power spectrum density (PSD). The performance of typical predictive correlation is evaluated and analyzed by utilizing the experimental data at different flow and pressure conditions (0.1–0.8) MPa. The structure of Strouhal number and Lockhart-Martinelli (L-M) parameter are optimized reasonably, the mean velocity of the liquid film surface, the density increment of gas core, the gas core mass flow and average liquid film velocity are considered in the L-M parameter, a modified interfacial wave frequency correlation is proposed. The results indicate that the mean absolute error of the predictive correlation is 9.06% (current data) and 25.64% (literature data). The new correlation has a better predictive accuracy.


Author(s):  
Shigehisa Fukui ◽  
Soichi Shimizu ◽  
Kiyomi Yamane ◽  
Hiroshige Matsuoka

To examine deformations of ultra-thin but continuum liquid film, the long wave theory was employed. The long wave theory uses the time-evolution equation for the shape and deformation of the thin liquid film and includes the surface tensions and surface forces such as the van der Waals (vdW) force. By numerically solving the time-dependent long wave equation, deformations of the ultra-thin lubricant film considering the vdW pressure with initial/boundary configurations of the liquid surfaces were obtained.


2004 ◽  
Vol 2004.42 (0) ◽  
pp. 409-410
Author(s):  
Daigou AKASAKA ◽  
Kazuya YORINO ◽  
Hiroshige MATSUOKA ◽  
Shigehisa FUKUI

Author(s):  
E. Y. Gatapova ◽  
Y. V. Lyulin ◽  
I. V. Marchuk ◽  
O. A. Kabov ◽  
J.-C. Legros

A two-dimensional model of a steady laminar flow of liquid film and co-current gas flow in a plane channel is considered. It is supposed that the height of a channel is much less than its width. There is a local heat source on the bottom wall of the channel. An analytical solution for the temperature distribution problem in locally heated liquid film is obtained, when the velocity profile is linear. An analytical solution of the linearized equation for thermocapillary film surface deformation is found. A liquid bump caused by the thermocapillary effect in the region where thermal boundary layer reaches the film surface is obtained. Damped oscillations of the free surface may exist before the bump. This is obtained according to the solution of the problem in an inclined channel. It depends on the forces balance in the film. The defining criterion is found for this effect. The oscillations of free surface do not exist for horizontally located channel.


Author(s):  
Zoran V. Stosic ◽  
Vladimir D. Stevanovic ◽  
Akimi Serizawa

Spacers have positive effects on the heat transfer enhancement and critical heat flux (CHF) increase downstream of their location in the boiling channel. These effects are further increased by the inclusion of the fin on the spacer rear edge. Numerical simulation of a separation in a high void gas phase and dispersed droplets flow around a spacer, with a liquid film flowing on the wall, is performed. Mechanisms leading to the CHF increase due to the two-phase flow separation and liquid film thickening downstream the spacer are demonstrated. Numerical simulations of gas phase, entrained droplets and wall liquid film flows were performed with the three-fluid model and with the application of the high order numerical scheme for the liquid film surface interface tracking. Predicted is a separation of gas and entrained droplets streams around the spacer without and with a fin inclined 30 and 60 degrees to the wall, as well as a change of wall liquid film thickness in the vicinity of spacer. Results of liquid film dynamic behaviour are compared with the recently obtained experimental results. Multi-dimensional characteristics of surface waves on the liquid film were measured with newly developed ultrasonic transmission technique in a 3×3 rod bundle test section with air-water flow under atmospheric conditions. Obtained numerical results are in good agreement with experimental observations. The presented investigation gives insight into the complex mechanisms of separated two-phase flow with wall liquid film around the spacer and support thermal-hydraulic design and optimisation of flow obstacles in various thermal equipments.


Author(s):  
Elizaveta Gatapova ◽  
Oleg Kabov

The present work focuses upon shear-driven liquid film evaporative cooling of high heat flux local heater. Thin evaporating liquid films may provide very high heat transfer rates and can be used for cooling of high power microelectronic systems. Thermocapillary convection in a liquid film falling down a locally heated substrate has recently been extensively studied. However, non-uniform heating effects remain only partially understood for shear-driven liquid films. The combined effects of evaporation, thermocapillarity and gas dynamics as well as formation of microscopic adsorbed film have not been studied. The effect of evaporation on heat and mass transfer for 2D joint flow of a liquid film and gas is theoretically and numerically investigated. The convective terms in the energy equations are taken into account. The calculations reveal that evaporation from film surface essential influences on heat removal from local heater. It is shown that the thermal boundary layer plays significant role for cooling local heater by evaporating thin liquid film. Measured by an infrared scanner temperature distribution at the film surface is compared with numerical data. Calculations satisfactorily describe the maximal surface temperature value.


Sign in / Sign up

Export Citation Format

Share Document