2A2-D05 Foot System and Control Method for Stable Biped Walking on Rough Terrain(Walking Robot)

2011 ◽  
Vol 2011 (0) ◽  
pp. _2A2-D05_1-_2A2-D05_2
Author(s):  
Moyuru YAMADA ◽  
Shigenori SANO ◽  
Naoki UCHIYAMA
2008 ◽  
Vol 20 (5) ◽  
pp. 793-800 ◽  
Author(s):  
Mami Nishida ◽  
◽  
Hua O. Wang ◽  
Kazuo Tanaka ◽  

This paper presents a study on the development and control of a small biped walking robot using shape memory alloys (SMAs). We propose a flexible flat plate (FFP) consisting of a polyethylene plate and SMAs. Based on a detailed investigation of the properties of the SMA-based FFP structure, we develop a lightweight small walking robot incorporating multiple SMA-based FFPs. The walking robot has four degrees of freedom and is controlled by switching the ON-OFF current signals to the SMA-based FFPs. The switching timing, central to the control strategy to achieve walking behavior, is determined through experiments. The small robot realizes biped walking by transferring the elastic potential energy (generated by deflections of the SMA-based FFPs) to kinematic energy. The resulting small biped walking robot weighs a mere 2.8 g (with a height of 70 mm). Our experimental results demonstrate the viability and utility of the small walking robot with the proposed SMA-based FFPs and the control strategy to achieve walking behavior.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Martin Udengaard ◽  
Karl Iagnemma

An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose. To date, nearly all designs and analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain. In this paper, an investigation of the design and control of an omnidirectional mobile robot for use in rough terrain is presented. Kinematic and geometric properties of the active split offset caster drive mechanism are investigated along with system and subsystem design guidelines. An optimization method is implemented to explore the design space. The use of this method results in a robot that has higher mobility than a robot designed using engineering judgment. A simple kinematic controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented. It is shown in simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain.


2021 ◽  
pp. 1-29
Author(s):  
Eri Takane ◽  
Kenjiro Tadakuma ◽  
Masahiro Watanabe ◽  
Masashi Konyo ◽  
Satoshi Tadokoro

Abstract Omnidirectional mobility is a popular method of moving in narrow spaces. In particular, the planar omnidirectional crawler previously developed by the authors can traverse unstable and uneven terrain with a large contact area. A novel point is that the proposed system is unique in its ability to carry heavy loads in all directions without getting stuck because of the large pressure-receiving area between the crawler and ground. This work will facilitate omnidirectional motion, which has important implications for the use of robots in spaces such as not only factories, distribution centers, and warehouses but also soft soil in disaster sites. The objective of the present study was to establish a design and control method for an omnidirectional crawler mechanism that can conduct holonomic and two-axis cross driving. Only two motors are set on the crawler base for translation in the X- and Y-directions, and two large crawler units are arranged for turning. We design a small crawler that has higher traversing ability with a derailment prevention mechanism and tapered track. Further, the relationship between the motor rotational speed as input and crawler velocity as output was verified for control. In addition, it was demonstrated experimentally that the proposed crawler could travel across various types of rough terrain in a target direction.


2013 ◽  
Vol 431 ◽  
pp. 262-268
Author(s):  
Chuang Feng Huai ◽  
Xue Yan Jia

Walking robot has complicate structure and strong ability to adapt ground conditions, and it is difficult to control. To realize dynamic walking of the humanoid robot, we have to establish robot dynamic models, design the control algorithm for gait and the stability postures. In this paper, study dynamic model and control system of a 7-links biped robot, build parameterized simulation model of biped walking robot, proceed gait planning and simulation experiments in the simulation surrounding, and get some experiment results. Compare the experiment data with the theoretic stable region and confirm that the biped walking robot as leg mechanism has good stability of static walking, and provide theoretic and data information for further work.


1996 ◽  
Vol 118 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Ching-Long Shih

This research studies the dynamics and motion control of a biped walking robot with seven degrees of freedom. The main features of the biped robot include variable length legs and a translatable balance weight in the body. The statically stable walking of the biped robot is implemented by maintaining the center-of-gravity (cg) inside the convex region of the supporting foot/feet during both single-support and double-support phases. The dynamically stable walking of the biped robot is realized by maintaining the zero moment point (ZMP), which is the virtual total ground reaction point, within the region of the supporting foot during the single-support phases. An implementation of a prototype biped BR-1 and its experimental walking test results are described. The biped robot is able to walk on an even floor both statically and dynamically. On a flat plane, the biped can walk with a speed of 8 cm/second statically, and 20 cm/second dynamically.


2017 ◽  
Vol 29 (3) ◽  
pp. 536-545
Author(s):  
Masahiro Ikeda ◽  
◽  
Ikuo Mizuuchi

[abstFig src='/00290003/09.jpg' width='300' text='Energy flow in legged robot' ] As a method of robot movement, legs have the advantage of traversability on rough terrain. However, the motion of a legged robot is accompanied by energy loss. The main causes for this loss could be negative work and contact between the legs and ground. On the other hand, animals with legs are considered to reduce energy loss by using the elasticity of their body. In this study, we analyze the influence of walking, using an elastic passive joint mounted on the trunk of a quadruped robot, on the energy loss. Additionally, we study the energy flow between legs and elastic components. In this study, we clarify a control method for quadruped robots in order to reduce the energy loss of walking. The results of simulating a quadruped walking robot, which has passive joints with elastic components on the trunk, are analyzed and the relationship between each kind of energy loss and the trunk joint’s elasticity is clarified.


Sign in / Sign up

Export Citation Format

Share Document