3P2-I05 On-chip Mechanical Parameter Measurement with Successive Feeding of Oocyte Using a Potential Field(Nano/Micro Fluid System)

2014 ◽  
Vol 2014 (0) ◽  
pp. _3P2-I05_1-_3P2-I05_4
Author(s):  
Kou Nakahara ◽  
Keitaro Ito ◽  
Shinya Sakuma ◽  
Fumihito Arai
2012 ◽  
Vol 2012 (0) ◽  
pp. _1P1-U04_1-_1P1-U04_4
Author(s):  
Lin FENG ◽  
Masaya HAGIWARA ◽  
Akihiko ICHIKAWA ◽  
Tomohiro KAWAHARA ◽  
Fumihito ARAI

2010 ◽  
Vol 152-153 ◽  
pp. 263-268
Author(s):  
Zhen Zhong Sun ◽  
Zeng Hong ◽  
Sheng Gui Chen

By using homogenous coordinate transformation principle and Denavit-Hartenberg analysis method, a measurement kinematics model and a error model to arbitrary point of automobile panels in normal mechanical parameter measurement instrument, which the movement of the probe center is relative to machine reference frame is construct. On the basis of using wielding matrix function total differential method, building up the error delivery relation of parameter error of measuring motion model transform to the probe center, and having verified what be built the error model correctness by simulation. The error is enlarge mainly in the process of delivery from angle error, while length error are very minor in error effects. This research can establish a base for studying the measuring-error of portable type measures instrument and it's measuring accuracy.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


Sign in / Sign up

Export Citation Format

Share Document