scholarly journals E134 Thermal radiation control in terahertz to mid-infrared wave by spoof surface plasmon

2013 ◽  
Vol 2013 (0) ◽  
pp. 155-156
Author(s):  
Junichi Takahara ◽  
Yosuke Ueba
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


Author(s):  
Jiao Chi ◽  
Hongjun Liu ◽  
Zhaolu Wang ◽  
Nan Huang

Abstract Graphene plasmons with enhanced localized electric field have been used for boosting the light-matter interaction in linear optical nano-devices. Meanwhile, graphene is an excellent nonlinear material for several third-order nonlinear processes. We present a theoretical investigation of the mechanism of plasmon-enhanced third-order nonlinearity susceptibility of graphene nanoribbons. It is demonstrated that the third-order nonlinearity susceptibility of graphene nanoribbons with excited graphene surface plasmon polaritons can be an order of magnitude larger than the intrinsic susceptibility of a continuous graphene sheet. Combining these properties with the relaxed phase matching condition due to the ultrathin graphene, we propose a novel plasmon-enhanced mid-infrared wavelength converter with arrays of graphene nanoribbons. The wavelength of sig-nal light is in mid-infrared range, which can excite the tunable surface plasmon polaritons in arrays of graphene nanoribbons. The efficiency of the converter from mid-infrared to near-infrared wavelength can be remarkably improved by 60 times compared with the graphene sheet without graphene plasmons. This work provides a novel idea for the efficient application of graphene in the nonlinear optical nano-devices. The proposed mid-infrared wavelength converter is compact, tunable and has promising potential in graphene-based mid-infrared detector with high detection efficiency.


2019 ◽  
Vol 43 (4) ◽  
pp. 596-604 ◽  
Author(s):  
D.V. Nesterenko ◽  
R.A. Pavelkin ◽  
S. Hayashi

In this work, we consider the use of planar sensing structures, which support excitation of surface plasmon polarition (SPP) modes, for detecting changes in solvents, i.e. water, ethanol, isopropanol. In the structures under study, SPP modes propagate along the interfaces between metals and general solvents. The analysis of characteristics of the resonance response is based on Fano’s approximation within the coupled-mode theory in the visible and infrared regions. The maximum sensitivity and field enhancement are revealed in the near- and mid-infrared regions in the case of ethanol and isopropanol, which enables sensing applications beyond the regions of water absorption.


2009 ◽  
Vol 97 (4) ◽  
pp. 1003-1012 ◽  
Author(s):  
Victor Yashunsky ◽  
Simcha Shimron ◽  
Vladislav Lirtsman ◽  
Aryeh M. Weiss ◽  
Naomi Melamed-Book ◽  
...  

2018 ◽  
Vol 112 (17) ◽  
pp. 171107 ◽  
Author(s):  
A. I. Yakimov ◽  
V. V. Kirienko ◽  
V. A. Armbrister ◽  
A. A. Bloshkin ◽  
A. V. Dvurechenskii

Optik ◽  
2020 ◽  
Vol 220 ◽  
pp. 165142
Author(s):  
Tiesheng Wu ◽  
Xueyu Wang ◽  
Huixian Zhang ◽  
Weiping Cao ◽  
Yiying Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document