High-speed visualization on boiling heat transfer using temperature sensitive paint

2019 ◽  
Vol 2019 (0) ◽  
pp. 0174
Author(s):  
Soumei Baba ◽  
Satoshi Someya
Author(s):  
Xiaopeng Qu ◽  
Huihe Qiu

The effect of acoustic field on the dynamics of micro thermal bubble is investigated in this paper. The micro thermal bubbles were generated by a micro heater which was fabricated by standard Micro-Electro-Mechanical-System (MEMS) technology and integrated into a mini chamber. The acoustic field formed in the mini chamber was generated by a piezoelectric plate which was adhered on the top side of the chamber’s wall. The dynamics and related heat transfer induced by the micro heater generated vapor bubble with and without the existing of acoustic field were characterized by a high speed photograph system and a micro temperature sensor. Through the experiments, it was found that in two different conditions, the temperature changing induced by the micro heater generated vapor bubble was significantly different. From the analysis of the high speed photograph results, the acoustic force induced micro thermal bubble movements, such as forcibly removing, collapsing and sweeping, were the main effects of acoustic enhanced boiling heat transfer. The experimental results and theoretical analysis were helpful for understanding of the mechanisms of acoustic enhanced boiling heat transfer and development of novel micro cooling devices.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Husain Al Hashimi ◽  
Caleb F. Hammer ◽  
Michel T. Lebon ◽  
Dan Zhang ◽  
Jungho Kim

Techniques based on temperature-sensitive paints (TSP) to measure time-resolved temperature and heat transfer distributions at the interface between a wall and fluid during pool and flow boiling are described. The paints are excited using ultraviolet (UV) light emitting diodes (LEDs), and changes in fluorescence intensity are used to infer local temperature differences across a thin insulator from which heat flux distribution is obtained. Advantages over infrared (IR) thermometry include the ability to use substrates that are opaque to IR (e.g., glass, plexiglass and plastic films), use of low-cost optical cameras, no self-emission from substrates to complicate data interpretation, high speed, and high spatial resolution. TSP-based methods to measure wall heat transfer distributions are validated and then demonstrated for pool and flow boiling.


Author(s):  
Giti Karimi-Moghaddam ◽  
Richard D. Gould ◽  
Subhashish Bhattacharya

In this paper, the performance of pool boiling heat transfer using a binary temperature sensitive magnetic fluid in the presence of a non-uniform magnetic field is investigated numerically. By using a binary magnetic fluid, enhanced boiling heat transfer is obtained by thermomagnetic convection without deterioration of properties of the fluid. This work is aimed at gaining a qualitative understanding the magnetic field effects on boiling heat transfer enhancement of magnetic fluids. In order to accomplish this, the boiling process and the effects of position of the external magnetic field on flow pattern and heat transfer are investigated in a 2D rectangular domain using COMSOL Multiphysics simulation software. Finally, the boiling curves for a binary temperature sensitive magnetic fluid and its base fluid (without magnetic particles) are compared for various applied heat flux magnitudes.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Nitin Doifode ◽  
Sameer Gajghate ◽  
Abdul Najim ◽  
Anil Acharya ◽  
Ashok Pise

Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.


2011 ◽  
Vol 312-315 ◽  
pp. 352-357 ◽  
Author(s):  
K.C. Leong ◽  
L.W. Jin ◽  
I. Pranoto ◽  
H.Y Li ◽  
J.C. Chai

This paper presents the results of an experimental study of heat transfer in a pool boiling evaporator with porous insert. Different types of graphite foams were tested with the phase change coolant FC-72 in a designed thermosyphon. Comparisons between the graphite foams and a solid copper block show that the porous structure enhances pool boiling significantly. The boiling thermal resistance of the tested graphite foams was found to be about 2 times lower than that of the copper block. The bubble formation recorded by a high speed camera indicates that boiling from a graphite foam is more vigorous than from a copper block. The designed thermosyphon with graphite foam insert can remove heat fluxes of up to 112 W/cm2 with the maximum heater temperature maintained below 100°C.


Author(s):  
Roberto Claretti ◽  
Jahed Hossain ◽  
S. B. Verma ◽  
J. S. Kapat ◽  
James P. Downs ◽  
...  

The present work studies the effect of low streamwise jet-to-jet spacing and uneven spanwise jet-to-jet spacing on target wall heat transfer coefficient in impingement cooling systems. Temperature sensitive paint alongside constant flux heaters were used to gather heat transfer data on the target wall. Two different geometries have been tested with varying jet-to-jet spanwise distance. The streamwise jet spacing was set to 3 jet diameters, the spanwise jet spacing was set to 3, 8 and 13 jet diameters while the jet-to-target spacing was set to 3 jet diameters. The tests were run at three average jet Reynolds numbers of 10,000, 13,000 and 16,000. Results show little effect of crossflow on the target wall heat transfer. Nusselt number profiles are compared to the Florschuetz prediction, the area averaged Nusselt number matches closely; however, the Florschuetz correlation shows a decreasing trend in Nusselt number as a function of streamwise distance while the data shows a Nusselt number profile that remains relatively constant as a function of streamwise distance, x. To better understand the flow physics behind this trend, a CFD run was set up using the ν2-f turbulence model for all cases. Computational and experimental results display a strong similarity of their heat transfer trends. The crossflow is seen to not be able to reattach behind each jet due to their proximity to one another.


Sign in / Sign up

Export Citation Format

Share Document