Improvement of Aerodynamic Performance of a Low-Pressure Turbine Stage for Aero-Engines Taking Advantage of Wake-Blade Interaction

2002 ◽  
Vol 2002 (0) ◽  
pp. 103-104
Author(s):  
Kenichi FUNAZAKI ◽  
Toru TAKASHIMA ◽  
Satoru YAMAMOTO
Author(s):  
A. Marn ◽  
E. Go¨ttlich ◽  
F. Malzacher ◽  
H. P. Pirker

The demand of further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters, which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct (ITD) has to be as short as possible. This leads to an aggressive (high diffusion) and further to a super-aggressive s-shaped duct geometry. In order to investigate the influence of the blade tip gap size on such a high diffusion duct flow a detailed test arrangement under engine representative conditions is necessary. Therefore, the continuously operating Transonic Test Turbine Facility (TTTF) at Graz University of Technology has been adapted: An super-aggressive intermediate duct is arranged downstream of a transonic HP-turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees. A second LP-vane row is located at the end of the duct and represents the counter rotating low pressure turbine at a larger diameter. A following deswirler and a diffuser are the connection to the exhaust casing of the facility. In order to determine the influence of the blade tip gap size on the flow through such a super-aggressive s-shaped turbine duct measurements were conducted with two different tip gap sizes, 1.5% span (0.8 mm) and 2.4% span (1.3 mm). The aerodynamic design of the HP-turbine stage, ITD, LP-vane and the de-swirler was done by MTU Aero engines. In 2007 at ASME Turbo Expo the influence of the rotor clearance size onto the flow through an aggressive ITD was presented. For the present investigation this aggressive duct has been further shortened by 20% (super-aggressive ITD) that the flow at the outer duct wall is fully separated. This paper shows the influence of the rotor tip clearance size onto this separation. The flow through this intermediate turbine duct was investigated by means of five-hole-probes, static pressure taps, boundary layer rakes and oil flow visualisation. The oil flow visualisation showed the existence of vortical structures within the separation where they seem to be imposed by the upstream HP-vanes. This work is part of the EU-project AIDA (Aggressive Intermediate Duct Aerodynamics, Contract: AST3-CT-2003-502836).


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
A. Marn ◽  
E. Göttlich ◽  
F. Malzacher ◽  
H. P. Pirker

The demand for a further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters, which rotate at a lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight, this intermediate turbine duct (ITD) has to be as short as possible. This leads to an aggressive (high diffusion) and, furthermore, to a super-aggressive s-shaped duct geometry. In order to investigate the influence of the blade tip gap size on such a high diffusion duct flow a detailed test arrangement under engine representative conditions is necessary. Therefore, the continuously operating Transonic Test Turbine Facility (TTTF) at Graz University of Technology has been adapted: An super-aggressive intermediate duct is arranged downstream of a transonic high pressure (HP)-turbine stage providing an exit Mach number of about 0.6 and a swirl angle of –15 deg. A second low pressure (LP)-vane row is located at the end of the duct and represents the counter-rotating low pressure turbine at a larger diameter. A following deswirler and a diffuser are the connection to the exhaust casing of the facility. In order to determine the influence of the blade tip gap size on the flow through such a super-aggressive s-shaped turbine, duct measurements were conducted with two different tip gap sizes, a 1.5% span (0.8 mm) and a 2.4% span (1.3 mm). The aerodynamic design of the HP-turbine stage, ITD, LP-vane, and the de-swirler was done by MTU Aero engines. In 2007 at the ASME Turbo Expo, the influence of the rotor clearance size onto the flow through an aggressive ITD was presented. For the present investigation, this aggressive duct has been further shortened by 20% (super-aggressive ITD) so that the flow at the outer duct wall is fully separated. This paper shows the influence of the rotor tip clearance size on to this separation. The flow through this intermediate turbine duct was investigated by means of five-hole-probes, static pressure taps, boundary layer rakes, and oil flow visualization. The oil flow visualization showed the existence of vortical structures within the separation where they seem to be imposed by the upstream HP-vanes.


Author(s):  
A. Marn ◽  
E. Go¨ttlich ◽  
R. Pecnik ◽  
F. J. Malzacher ◽  
O. Schennach ◽  
...  

The demand of further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible. This leads to an aggressive (high diffusion) s-shaped duct geometry. To investigate the influence of the blade tip gap size of such a nonseparating high diffusion duct flow a detailed test arrangement under engine representative conditions is necessary. Therefore, the continuously operating Transonic Test Turbine Facility (TTTF) at Graz University of Technology has been adapted: A high diffusion intermediate duct is arranged downstream a HP turbine stage providing an exit Mach number of about 0.6 and a swirl angle of 15 degrees (counter swirl). An LP vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. In order to determine the influence of the blade tip gap size on the flow through such an s-shaped turbine duct measurements were conducted with two different tip gap sizes, 1.5% span (0.8mm) and 2.4% span. (1.3mm). The aerodynamic design of the HP vane, the HP turbine, the duct and the LP vane was done by MTU Aero Engines. The investigation was conducted by means of five-hole-probes with thermocouples, boundary layer rakes and static pressure taps at the inner and outer wall along the duct at several circumferential positions. Five-hole-probe measurements were done in five planes within the duct and in two planes downstream of the LP vane. A rough estimation of the duct loss is given at the end of the paper. Part II of this work deals with two-component Laser-Doppler Velocimeter (LDV) measurements at duct inlet directly downstream the HP blade to obtain unsteady information about the inflow. Additionally, oil film visualisation was used to get information about the surface flow at the outer and inner wall of the duct.


Author(s):  
E. Go¨ttlich ◽  
A. Marn ◽  
R. Pecnik ◽  
F. J. Malzacher ◽  
O. Schennach ◽  
...  

The demand of further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters rotating at lower speed. Therefore it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at larger diameter without any separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible leading to aggressive (high diffusion) S-shaped duct geometries. To investigate the influence of the blade tip gap size on such a nonseparating high diffusion duct flow a detailed test arrangement under engine representative conditions is necessary. Therefore the continuously operating Transonic Test Turbine Facility (TTTF) at Graz University of Technology has been adapted: An high diffusion intermediate duct is arranged downstream of a HP turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees. A LP vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. In order to determine the influence of the blade tip gap size on the flow through such an S-shaped turbine duct measurements were performed with two different tip gap sizes, 0.8 mm and 1.3 mm. The aerodynamic design was done by MTU Aero Engines. While Part I describes the investigation by means of five hole probes with thermo couples, boundary layer rakes and static pressure tappings Part II uses Laser-Doppler-Velocimetry (LDV) for measurements at duct inlet directly downstream the HP blades to obtain unsteady information about the inflow and to quantify the differences between the two tip gaps. Additionally oil-film visualization was used to discuss the surface flow at the outer and inner wall of the duct. A comparison with a numerical simulation is also given. This work is part of the EU-project AIDA (Aggressive Intermediate Duct Aerodynamics, Contract: AST3-CT-2003-502836).


2018 ◽  
Vol 3 (1) ◽  
pp. 10-21
Author(s):  
L. Witanowski ◽  
P. Klonowicz ◽  
P. Lampart

Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
S. Pramstrahler ◽  
F. Heitmeir ◽  
...  

Abstract The design of modern aero engines enhances the interaction between components and facilitates the propagation of circumferential distortions of total pressure and temperature. As a consequence, the inlet conditions of a real turbine have significant spatial non-uniformities, which have direct consequences on both its aerodynamic and vibration characteristics. This work presents the results of an experimental study on the effects of different inlet total pressure distortion-stator clocking positions on the propagation of total pressure inflow disturbances through a low pressure turbine stage, with a particular focus on both the aerodynamic and aeroelastic performance. Measurements at a stable engine relevant operating condition and during transient operation were carried out in a one and a half stage subsonic turbine test facility at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. A localised total pressure distortion was generated upstream of the stage in three different azimuthal positions relative to the stator vanes. The locations were chosen in order to align the distortion directly with a vane leading edge, suction side and pressure side. Additionally, a setup with clean inflow was used as reference. Steady and unsteady aerodynamic measurements were taken downstream of the investigated stage by means of a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively. Strain gauges applied on different blades were used in combination with a telemetry system to acquire the rotor vibration data. The aerodynamic interactions between the stator and rotor rows and the circumferential perturbation were studied through the identification of the main structures constituting the flow field. This showed that the steady and unsteady alterations created by the distortion in the flow field lead to modifications of the rotor vibration characteristics. Moreover, the importance of the impact that the pressure distortion azimuthal position has on the LPT stage aerodynamics and vibrations was highlighted.


2006 ◽  
Vol 2006 (0) ◽  
pp. _G603-1_-_G603-4_
Author(s):  
Ken-ichi Funazaki ◽  
Kazutoyo Yamada ◽  
Takahiro Ono ◽  
Hiroshi Hamazaki ◽  
Akira Takahashi ◽  
...  

Author(s):  
A. Asghar ◽  
W. D. E. Allan ◽  
M. LaViolette ◽  
R. Woodason

This paper addresses the issue of aerodynamic performance of a novel 3D leading edge modification to a reference low pressure turbine blade. An analysis of tubercles found in nature and used in some engineering applications was employed to synthesize new leading edge geometry. A sinusoidal wave-like geometry characterized by wavelength and amplitude was used to modify the leading edge along the span of a 2D profile, rendering a 3D blade shape. The rationale behind using the sinusoidal leading edge was that they induce streamwise vortices at the leading edge which influence the separation behaviour downstream. Surface pressure and total pressure measurements were made in experiments on a cascade rig. These were complemented with computational fluid dynamics studies where flow visualization was also made from numerical results. The tests were carried out at low Reynolds number of 5.5 × 104 on a well-researched profile representative of conventional low pressure turbine profiles. The performance of the new 3D leading edge geometries was compared against the reference blade revealing a downstream shift in separated flow for the LE tubercle blades; however, total pressure loss reduction was not conclusively substantiated for the blade with leading edge tubercles when compared with the performance of the baseline blade. Factors contributing to the total pressure loss are discussed.


Sign in / Sign up

Export Citation Format

Share Document