Numerical Simulations on Heat Transfer Characteristics of Integrated Impingement Cooling Systems for a High Temperature Turbine

2002 ◽  
Vol 2002 (0) ◽  
pp. 23-24
Author(s):  
Kenichi FUNAZAKI ◽  
Toshimitsu KUDO ◽  
Kazunori HACHIYA
Author(s):  
K. Funazaki ◽  
Y. Tarukawa ◽  
T. Kudo ◽  
S. Matsuno ◽  
R. Imai ◽  
...  

This paper deals with fundamental research on heat transfer characteristics inside a cooling configuration designed for an ultra-high temperature turbine nozzle. The cooling configuration adopted in this study integrates impingement cooling and pin cooling devices into one body, aiming at the enhancement of the effective area for the impingement cooling. A large-scaled test model of this cooling system is constructed to measure its internal heat transfer distribution, where a number of pins are sandwiched between an impingement plate and a target plate. The target plate are provided with several air discharging holes. A focus of this study is on how the heat transfer characteristics depend on the effect of stand-off distance: a distance between these two plates. Ratios of the stand-off distance to the impingement hole diameter varies from 0.75 to 2.00. A transient measurement technique using narrow-banded thermochromatic liquid crystal (TLC) is employed to determine the heat transfer characteristics of the model. Numerical investigations using a commercial CFD code are also executed and those results are compared with the experimental data. It is accordingly found that the numerical results almost match the measurements. It is also shown that the addition of pins to the conventional impingement cooling system can produce about 50% increase in the effective cooling area.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4327
Author(s):  
Min-Seob Shin ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The present study experimentally and numerically investigates the effect of channel height on the flow and heat transfer characteristics of a channel impingement cooling configuration for various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured by maintaining a temperature difference between the jet exit and the target surface in the range of 15–17 °C for each channel height. The experimental results show the average heat transfer coefficient at the target surface increases with the jet Reynolds number and decreases with the channel height. An average Nusselt number correlation is developed based on 85 experimentally measured data points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the flow structure and its effect on the local heat transfer characteristics. The present study advances the primary understanding of the flow and heat transfer characteristics of the channel impingement cooling configuration with liquid jets.


2011 ◽  
Vol 148-149 ◽  
pp. 680-683
Author(s):  
Run Peng Sun ◽  
Wei Bing Zhu ◽  
Hong Chen ◽  
Chang Jiang Chen

Three-dimensional numerical study is conducted to investigate the heat transfer characteristics for the flow impingement cooling in the narrow passage based on cooling technology of turbine blade.The effects of the jet Reynolds number, impingement distance and initial cross-flow on heat transfer characteristic are investigated.Results show that when other parameters remain unchanged local heat transfer coefficient increases with increase of jet Reynolds number;overall heat transfer effect is reduced by initial cross-flow;there is an optimal distance to the best effect of heat transfer.


2017 ◽  
Author(s):  
Nazih A. Bin-Abdun ◽  
Zuradzman M. Razlan ◽  
Shahriman A. B. ◽  
D. Hazry ◽  
Khairunizam Wan ◽  
...  

Author(s):  
Feng Zhang ◽  
Xinjun Wang ◽  
Jun Li ◽  
Rui Tan ◽  
Dongliang Wei

The present numerical study is conducted to investigate the flow and heat transfer characteristics for impingement cooling on concave or convex dimpled plate with four different dimple arrangements. The investigation of the impingement cooling on the flat plate is also conducted to serve as a contrast and these results are compared with experimental measurements to verify the computational method. Dimples studied here are placed, relative to impingement holes, in either spanwise shifted, in staggered, in in-line, or in streamwise shifted arrangements. The flow structure, pressure loss and heat transfer characteristics of the concave and convex dimpled plate of four different dimple arrangements have been obtained and compared with flat plate for the Reynolds number range of 15000 to 35000. The results show that compared with flat plate, the added concave or convex dimples only causes a negligible increase in the pressure loss, and the pressure loss is insensitive to concave or convex dimple arrangement patterns. In addition, compared with flat plate, both spanwise shifted and staggered concave dimple arrangements show better heat transfer performance, while in-line concave dimple arrangement show worse results. Besides that, the heat transfer performance for streamwise shifted concave dimple arrangement is the worst. Furthermore, compared with flat plate, all convex dimple arrangements studied here show better heat transfer performance.


Energies ◽  
2014 ◽  
Vol 7 (9) ◽  
pp. 5548-5565 ◽  
Author(s):  
Theresa Weith ◽  
Florian Heberle ◽  
Markus Preißinger ◽  
Dieter Brüggemann

Sign in / Sign up

Export Citation Format

Share Document