Relationships between Mechanical Properties and Morphology of Poly (Lactic Acid)/ Poly (Butylene Succinate) /Rice Straw Composites

2016 ◽  
Vol 2016.52 (0) ◽  
pp. 119
Author(s):  
Tatsuya ONOGAKI ◽  
Jiahui QIU ◽  
Eiichi SAKAI ◽  
Kazushi ITO
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


2011 ◽  
Vol 675-677 ◽  
pp. 357-360
Author(s):  
Li Jun Qin ◽  
Jian Hui Qiu ◽  
Ming Zhu Liu ◽  
Sheng Long Ding ◽  
Liang Shao ◽  
...  

The modified rice straw fibers (MRSF) were prepared by suspension polymerization technique of butyl acrylate (BA) monomer and rice straw fibers (RSF) in water solution. FTIR test indicated that PBA was coated and absorbed on RSF.The biodegradable composites were prepared with the MRSF and poly(lactic acid) (PLA) by HAAKE rheometer. Mechanical properties showed that the tensile strength of PLA/MRSF composites were (W (%) =7.98%) increased by 6 MPa compared with blank sample. The possible reason was that the good interfacial adhesion between PLA and MRSF, which was demonstrated by SEM.


Sign in / Sign up

Export Citation Format

Share Document