Composites of Poly(lactic Acid) with Rice Straw Fibers Modified by Poly(butyl Acrylate)

2011 ◽  
Vol 675-677 ◽  
pp. 357-360
Author(s):  
Li Jun Qin ◽  
Jian Hui Qiu ◽  
Ming Zhu Liu ◽  
Sheng Long Ding ◽  
Liang Shao ◽  
...  

The modified rice straw fibers (MRSF) were prepared by suspension polymerization technique of butyl acrylate (BA) monomer and rice straw fibers (RSF) in water solution. FTIR test indicated that PBA was coated and absorbed on RSF.The biodegradable composites were prepared with the MRSF and poly(lactic acid) (PLA) by HAAKE rheometer. Mechanical properties showed that the tensile strength of PLA/MRSF composites were (W (%) =7.98%) increased by 6 MPa compared with blank sample. The possible reason was that the good interfacial adhesion between PLA and MRSF, which was demonstrated by SEM.

2016 ◽  
Vol 47 (3) ◽  
pp. 390-407 ◽  
Author(s):  
Jianxia Yang ◽  
Luping Zhu ◽  
Zhuo Yang ◽  
Lan Yao ◽  
Yiping Qiu

Natural cellulose fiber reinforced biopolymer composites have attracted increasing attention due to environmental concerns. However, these fibers have relatively low mechanical properties and poor interfacial adhesion with matrices, limiting their composite mechanical properties. This study investigates the synergistic effect of two recently developed techniques to maximize the mechanical performance of ramie/poly (lactic acid) laminated composites, namely alkali treatment to loosen fiber molecular structure and to increase fiber surface roughness and subsequent cyclic loading treatment to fabrics to increase their tensile strength and modulus. The results show that the treated fabrics have increased crystallinity and crystal orientation factor as well as better orientation of fibers and more uniform structures, leading to 11% improvement in fabric tensile strength and 57% enhancement of tensile strength (90.9 MPa), 48% higher tensile modulus (5.6 GPa), 18% higher flexural strength (149.4 MPa), and 91% higher flexural modulus (8.2 GPa) for the corresponding composites. Meanwhile, postmortem analysis shows that better interfacial adhesion is achieved using this approach.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


2013 ◽  
Vol 647 ◽  
pp. 798-801 ◽  
Author(s):  
Wen Can Xi ◽  
Hong Mei Kang ◽  
Hua Li ◽  
He Zhou Liu ◽  
Wei Jie Wang ◽  
...  

Binary blendscomposed of polyhrdroxyalkanoates (P34HB) and poly(lactic acid) (PLA) with various P34HB weight percentage were preparedby extrusion and compressing molding.Both the thermo-oxidative agingat 80°Cand the hydrothermal aging at 80°C with 80% humidity were performed for 300 h for the P34HB/PLA blends respectively.The mechanical properties of tensile strength and elongation-at-breakrevealed that P34HB/PLA blends possessedthe balanced mechanical properties between P34HB and PLA,theblends with higher ratio of P34HBshowed thedeteriorative mechanical behavior in the aging environment faster than thoseblends with lower ratio of P34HB.


2017 ◽  
Vol 88 (14) ◽  
pp. 1616-1627 ◽  
Author(s):  
Shu-qiang Liu ◽  
Gai-hong Wu ◽  
Yun-chao Xiao ◽  
Hong-xia Guo ◽  
Fen-juan Shao

Poly(lactic acid) (PLA) fiber, owing to its biocompatibility and biodegradability, could be widely used in many related industrial areas. However, high brittleness has been the main obstacle to expanding its applications. So in this paper, carbon nanotube (CNT) nanocapsules were designed to toughen PLA and further reported their effect on the crystallization behavior and mechanical properties of PLA complex fiber. These designed CNT nanocapsules successfully solved the agglomeration of CNTs within the PLA matrix as well as the compatibility issue. In addition, the morphological, mechanical, optical and thermal properties of PLA complex fibers were also studied. The addition of CNT nanocapsules obviously improved the crystallization behavior of PLA fiber. Furthermore, compared with pure PLA, the tensile strength of PLA complex fiber was enhanced by 30.62% and the elongation by 32.2%, so the designed CNT nanocapsules could be used as a toughener for PLA fiber. This research benefits the extension of PLA applications where toughness is an important factor.


2011 ◽  
Vol 380 ◽  
pp. 290-293
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
De Gao

In situ melt copolycondensation was proposed to prepare biodegradable copolyester nanocomposites based on degradable components poly(L-lactic acid) (PLA), rigid segments poly(butylene terephthalate) (PBT), and nanoparticles polyhedral oligomeric silsesquioxanes (POSS). The morphologies and dispersions of two POSS nanoparticles (POSS-NH2 and POSS-PEG) in the copolyester PLABT matrix and their effects on the mechanical properties were investigated. The results demonstrated that the morphologies and dispersions of POSS-NH2 and POSS-PEG showed quite different characteristics. POSS-PEG took better dispersion in the PLABT, while POSS-NH2 had poor dispersions and formed crystalline microaggregates. Due to the good dispersion and strong interfacial adhesion of POSS-PEG with the matrix, the tensile strength and Young’s modulus were greatly improved from 6.4 and 9.6 MPa for neat PLABT up to 11.2 and 70.7 MPa for PLABT/POSS-PEG nanocomposite. Moreover, the incorporation of POSS-PEG could impart macromolecular chains good flexibility and improve the mobility of the chains, so the the elongation at break of PLABT/POSS-PEG nanocomposite dramatically increased from 190 to 350 % compared with neat PLABT.


2014 ◽  
Vol 775-776 ◽  
pp. 24-28
Author(s):  
Taciana Regina de Gouveia Silva ◽  
Bartira Brandão da Cunha ◽  
Pankaj Agrawal ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

In this work, the effect of the PCL content and E-GMA compatibilizer on the mechanical properties and morphology of poly (lactic acid) - PLA/ poly (ε-caprolactone)-PCL blends was investigated. The results of the mechanical properties showed that there was a reduction in the elastic modulus and tensile strength when PCL was added to PLA. The decrease in the modulus was more pronounced when the PCL content was increased from 10 to 20% (wt). The PLA/PCL/E-GMA blend showed the lower modulus and tensile strength. This blend also presented the higher elongation at break and impact strength. The morphology analysis by SEM showed that the PLA/PCL blends where characterized by lack of adhesion between the PLA and PCL phases. The presence of E-GMA in the PLA/PCL/E-GMA blend improved the adhesion between the PLA and PCL phases.Keywords: poly (latic acid); poly (ε-caprolactone); polymer blends; compatibilizer


2013 ◽  
Vol 22 (6) ◽  
pp. 389-399 ◽  
Author(s):  
Nam Gibeop ◽  
D.W. Lee ◽  
C.Venkata Prasad ◽  
F. Toru ◽  
Byung Sun Kim ◽  
...  

2011 ◽  
Vol 410 ◽  
pp. 51-54 ◽  
Author(s):  
Arpaporn Teamsinsungvon ◽  
Yupaporn Ruksakulpiwat ◽  
Kasama Jarukumjorn

Poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend and its composite were prepared by melt blending method. Maleic anhydride grafted PLA (PLA-g-MA) prepared in-house was used as a compatibilizer to enhance the interfacial adhesion between PLA and PBAT and also to improve the dispersion of calcium carbonate (CaCO3) in polymer matrices. Increasing PBAT content (10-30 wt%) resulted in the improvement of elongation at break and impact strength of PLA. Tensile strength, Young’s modulus, and impact strength of PLA/PBAT blend improved with the presence of PLA-g-MA due to enhanced interfacial adhesion between PLA and PBAT. As CaCO3 (5 wt%) was incorporated into the compatibilized blend, tensile strength, Young’s modulus, and impact strength insignificantly changed while elongation at break decreased.


Sign in / Sign up

Export Citation Format

Share Document