scholarly journals Poly(Lactic Acid)–Poly(Butylene Succinate)–Sugar Beet Pulp Composites; Part I: Mechanics of Composites with Fine and Coarse Sugar Beet Pulp Particles

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.

2005 ◽  
Vol 53 (23) ◽  
pp. 9017-9022 ◽  
Author(s):  
Liu ◽  
Marshall L. Fishman ◽  
Kevin B. Hicks ◽  
Cheng-Kung Liu

2007 ◽  
Vol 1 (3) ◽  
pp. 323-330 ◽  
Author(s):  
L. S. Liu ◽  
V. L. Finkenstadt ◽  
C.-K. Liu ◽  
D. R. Coffin ◽  
J. L. Willett ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5493
Author(s):  
Anna Strąkowska ◽  
Sylwia Członka ◽  
Agnė Kairytė

Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.


2006 ◽  
Vol 15 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Victoria L. Finkenstadt ◽  
LinShu Liu ◽  
J. L. Willett

2011 ◽  
Vol 50 (No. 12) ◽  
pp. 553-560 ◽  
Author(s):  
P. Doležal ◽  
V. Pyrochta ◽  
J. Doležal

This study deals with effects of pressing of ensiled sugar-beet pulp and of application of a chemical preservative on the quality of fermentation process. The experimental silages had a better sensory evaluation than the control ones. In silages treated chemically with a mixture of acids, statistically significantly (P < 0.01) higher dry matter content, lowest pH value, the value of lactic acid and the lowest content of all acids in dry matter were found after 180 days of storage from the beginning of the experiment. The statistically significantly (P < 0.01) highest lactic acid content (43.39 ± 1.25 g/kg DM) was determined in the control pressed silage. The highest LA/VFA ratio (1.40 ± 0.18) was calculated for non-pressed experimental silage (D – 3 l/t of KEM). As compared with untreated control the highest percentage (P < 0.01) of lactic acid and of all fermentation acids was found out in silage D treated with 3 l/t of KEM (58.18 ± 0.47 g/kg DM). Undesirable butyric and propionic acids were not found in chemically treated silage samples (C, D, E, F). However, the highest (P < 0.01) contents of butyric acid (26.37 ± 0.91 g/DM) and propionic acid (4.58 ± 0.78 g/DM) were measured in untreated non-pressed silage samples (B). The highest (P < 0.01) contents of acetic acid and ethanol were found in control silage samples. The quality of these silages was evaluated as very low.  


Sign in / Sign up

Export Citation Format

Share Document