618 Measurement of Crack Speed and Energy Release Rate of Rapidly Bifurcating Cracks in Araldite B

2006 ◽  
Vol 2006 (0) ◽  
pp. 353-354
Author(s):  
Shinichi SUZUKI ◽  
Kazuya IWANAGA
2019 ◽  
Vol 87 (3) ◽  
Author(s):  
Yalin Yu ◽  
Nikolaos Bouklas ◽  
Chad M. Landis ◽  
Rui Huang

Abstract Fracture of polymer gels is often time- and rate-dependent. Subject to a constant load, a gel specimen may fracture immediately or after a delay (time-dependent, delayed fracture). When a crack grows in a gel, the fracture energy may depend on the crack speed (rate-dependent). The underlying mechanisms for the time- and rate-dependent fracture of gels could include local molecular processes, polymer viscoelasticity, and solvent diffusion coupled with deformation (poroelasticity). This paper focuses on the effects of poroelasticity. A path-independent, modified J-integral approach is adopted to define the crack-tip energy release rate as the energetic driving force for crack growth in gels, taking into account the energy dissipation by solvent diffusion. For a stationary crack, the energy release rate is time-dependent, with which delayed fracture can be predicted based on a Griffith-like fracture criterion. For steady-state crack growth in a long-strip specimen, the energy release rate is a function of the crack speed, with rate-dependent poroelastic toughening. With a poroelastic cohesive zone model, solvent diffusion within the cohesive zone leads to significantly enhanced poroelastic toughening as the crack speed increases, rendering a rate-dependent traction-separation relation. While most of the results are based on a linear poroelastic formulation, future studies may extend to nonlinear theories with large deformation. In addition to the poroelastic effects, other mechanisms such as viscoelasticity and local fracture processes should be studied to further understand the time and rate-dependent fracture of polymer gels.


2018 ◽  
Vol 46 (3) ◽  
pp. 130-152
Author(s):  
Dennis S. Kelliher

ABSTRACT When performing predictive durability analyses on tires using finite element methods, it is generally recognized that energy release rate (ERR) is the best measure by which to characterize the fatigue behavior of rubber. By addressing actual cracks in a simulation geometry, ERR provides a more appropriate durability criterion than the strain energy density (SED) of geometries without cracks. If determined as a function of crack length and loading history, and augmented with material crack growth properties, ERR allows for a quantitative prediction of fatigue life. Complications arise, however, from extra steps required to implement the calculation of ERR within the analysis process. This article presents an overview and some details of a method to perform such analyses. The method involves a preprocessing step that automates the creation of a ribbon crack within an axisymmetric-geometry finite element model at a predetermined location. After inflating and expanding to three dimensions to fully load the tire against a surface, full ribbon sections of the crack are then incrementally closed through multiple solution steps, finally achieving complete closure. A postprocessing step is developed to determine ERR as a function of crack length from this enforced crack closure technique. This includes an innovative approach to calculating ERR as the crack length approaches zero.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 611
Author(s):  
Benshuai Chen ◽  
Guangchun Xiao ◽  
Mingdong Yi ◽  
Jingjie Zhang ◽  
Tingting Zhou ◽  
...  

In this paper, the Voronoimosaic model and the cohesive element method were used to simulate crack propagation in the microstructure of alumina/graphene composite ceramic tool materials. The effects of graphene characteristic size and volume content on the crack propagation behavior of microstructure model of alumina/graphene composite ceramics under different interfacial bonding strength were studied. When the phase interface is weak, the average energy release rate is the highest as the short diameter of graphene is 10–50 nm and the long diameter is 1600–2000 nm. When the phase interface is strong, the average energy release rate is the highest as the short diameter of graphene is 50–100 nm and the long diameter is 800–1200 nm. When the volume content of graphene is 0.50 vol.%, the average energy release rate reaches the maximum. When the velocity load is 0.005 m s−1, the simulation result is convergent. It is proven that the simulation results are in good agreement with the experimental phenomena.


1999 ◽  
Vol 594 ◽  
Author(s):  
J. C. Hay ◽  
E. G. Liniger ◽  
X-H Liu

AbstractIn developing an adhesion test for a microelectronics fabrication facility there are many criteria which must be met. Some of these include (i) sample prep must be simple, (ii) deformations should be elastic so the problem can be easily modeled, (iii) mechanics are ideally analytical, and (iv) the test end-point must be unambiguous and easy to obtain. A testing method in the literature which meets many of these criteria is the modified edge liftoff test (MELT). Delamination is induced through the release of strain energy stored in an elastic superlayer which results from a large mismatch in CTE between the film and substrate. In this work we consider details of the energy release rate calculation, effects of plate bending, and initial flaw size.


1964 ◽  
Vol 86 (4) ◽  
pp. 693-697 ◽  
Author(s):  
R. G. Forman ◽  
A. S. Kobayashi

This paper presents theoretical studies on the axial rigidities in strips with circular and elliptical perforations and subjected to uniaxial tension. Greenspan’s original derivations on these axial rigidities [2] were improved by using the elasticity solutions by Howland [6] and Ishida [7] for infinite strips with circular and elliptical perforations, respectively. Finally, the correction factors for centrally notched strips subjected to uniaxial tension were rederived from the above results following the energy approach by Irwin and Kies [3].


Sign in / Sign up

Export Citation Format

Share Document