P12 Effect of Residual Stress in Thin Films on Transmission Characteristics of a Laser Beam Through an Thin-Film Optical Wave-Guide

2006 ◽  
Vol 2006 (0) ◽  
pp. 543-544
Author(s):  
Atsushi KITAMURA ◽  
Ken Suzuki ◽  
Hideo MIURA
1999 ◽  
Vol 597 ◽  
Author(s):  
Tao Liu ◽  
Robert J. Samuels

AbstractModal loss coefficients for a planar leaky wave-guide are obtained by two new methods. One is a numerical calculation combining optical thin film theory with optical wave-guide theory; another is an analytical derivation based on analogy to Beer's law. Considering the influence of the modal loss, a modified mode equation for the planar leaky wave-guide is obtained, which greatly increases the accuracy of the refractive index and thickness of the thin film in a planar leaky wave-guide coupler (prism I film I substrate).


2016 ◽  
Vol 2 (2) ◽  
pp. 175
Author(s):  
Ki-sung Kang ◽  
Dea-wha Soh

<p>For the investigation of optical modulator, the optical wave-guide was fabricated on x-cut LiNbO<sub>3</sub> substrate using proton exchange method with self-aligned electrode. The electrode pattern was designed using a self-aligned thin film electrode method. After proton exchange process, the wave-guide could be prepared by annealing process to control the width and depth of the optical wave-guide. The initial crossover state of the fabricated 1´2 optical switch was observed with controlling the annealing process variables and the structure of self-aligned thin film electrodes. As the results in the present work, the measured cross talk and minimum detectable switching voltage were obtained at the values of -29.5dB and 8.0V, respectively, with good merits.</p>


1977 ◽  
Vol 4 (3-4) ◽  
pp. 179-183 ◽  
Author(s):  
Zs. Illyefalvi-Vitéz

The physical processes of arc erosive micromachining and the influence of trimming on the parameters of resistors have been examined, and thin film resistors without trimming are compared with those trimmed by arc erosion and laser beam machining.In the paper a theoretical model for arc erosion of thin films is proposed. The optimal conditions of arc erosive trimming are determined. The shape of the cuts are recorded and examined. The applicability of arc erosive trimming with respect to stability is proved. A measuring method is introduced for resistors trimmed by arc erosion using a direct current generator.


2003 ◽  
Vol 795 ◽  
Author(s):  
Alex A. Volinsky ◽  
Dirk C. Meyer ◽  
Tilmann Leisegang ◽  
Peter Paufler

ABSTRACTWhile there are many stress relief mechanisms observed in thin films, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress a network of through-thickness cracks forms in the film. In the case of compressive stress thin film buckling is observed in the form of blisters. Thin film delamination is an inseparable phenomenon of buckling. The buckling delamination blisters can be either circular, straight, or form periodic buckling patterns commonly known as telephone cord delamination morphology.While excessive biaxial residual stress is the key for causing thin film fracture, either in tension, or compression, it is the influence of the external stress that can control the final fracture pattern. In this paper we consider phone cord buckling delamination observed in compressed W/Si and TiWN/GaAs thin film systems, as well as spiral and sinusoidal though-thickness cracks observed in Mo/Si multilayers under 3-point high-temperature bending in tension.


Author(s):  
Jiatong Liu ◽  
Ken Suzuki ◽  
Hideo Miura

In a three-dimensional (3D) packaging systems, the interconnections which penetrate stacked silicon chips have been employed. Such interconnection structure is called TSV (Through Silicon Via) structure, and the via is recently filled by electroplated copper thin film. The electroplated copper thin films often consist of fine columnar grains and porous grain boundaries with high density of defects which don’t appear in conventional bulk material. This unique micro texture has been found to cause the wide variation of physical and chemical properties of this material. In the TSV structure, the shrinkage of the copper thin film caused by thermal deformation and recrystallization of the unique texture during high-temperature annealing is strictly constrained by surrounding rigid Si and thus, high tensile residual stress remains in the thin film after thermal annealing. High residual stress should give rise to mechanical fracture of the interconnections and the shift of electronic function of thin film devices formed in Si. Therefore, the residual stress in the interconnections should be minimized by controlling the appearance of the porous boundaries during electroplating for assuring the longterm reliability of the interconnections. As the lattice mismatch between Cu and its barrier film (Ta) is as larger as 18%, which is the main reason for the fine columnar structures and porous grain boundaries, it is necessary to control the underlayer crystallinity to improve the crystallinity of electroplated copper thin films. In this study, the effective method for controlling the crystallinity of the underlayer was investigated by improving the atomic configuration in the electroplated copper thin film. The result showed that by controlling the crystallinity of underlayer, crystallinity of electroplated copper thin films can be improved, the mechanical properties of thin films was improved and thus, stability and lifetime of electroplated copper interconnections can be improved.


Sign in / Sign up

Export Citation Format

Share Document