scholarly journals Size Effect on Fatigue Strength of Carbon Steel Machined by a Lathe : X-Ray Detection of Fatigue Damage in Machine Parts

1972 ◽  
Vol 38 (312) ◽  
pp. 1925-1931 ◽  
Author(s):  
Hisashi OHUCHIDA ◽  
Akio NISHIOKA ◽  
Masato NAGAO
1973 ◽  
Vol 16 (94) ◽  
pp. 639-646 ◽  
Author(s):  
Hisashi OHUCHIDA ◽  
Akio NISHIOKA ◽  
Masato NAGAO

1975 ◽  
Vol 10 (1) ◽  
pp. 32-41 ◽  
Author(s):  
K Tanaka

This paper describes results of several recent studies, carried out in Japan, on metal-fatigue problems using X-ray diffraction techniques. The subjects covered are the effect of residual stress on fatigue strength, non-destructive detection of fatigue damage from information supplied by X-ray diffraction, and X-ray microbeam analysis of stress and strain near the tips of fatigue cracks and fracture surfaces. The usefulness of the X-ray approach to fatigue problems is emphasized and possible future developments are suggested.


2014 ◽  
Vol 874 ◽  
pp. 101-106 ◽  
Author(s):  
Norbert Radek ◽  
Augustín Sladek ◽  
Jozef Broncek ◽  
Izabela Bilska ◽  
Agnieszka Szczotok

The paper is concerned with the performance properties of electrospark deposited coatings. The properties were assessed by analyzing the coating microstructure, X-ray diffraction, microhardness, roughness and bonding strength.The studies were conducted using WC-Co-Al2O3electrodes produced by sintering nanostructural powders. The anti-wear coatings were electro-spark deposited over C45 carbon steel by means of an EIL-8A. These coatings are likely to be applied to increase the abrasive wear resistance of tools and machine parts.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1153
Author(s):  
Ivan Pavlenko ◽  
Jozef Zajac ◽  
Nadiia Kharchenko ◽  
Ján Duplák ◽  
Vitalii Ivanov ◽  
...  

This article deals with improving the wear resistance of multilayer coatings as a fundamental problem in metal surface treatment, strengthening elements of cutting tools, and ensuring the reliability of machine parts. It aims to evaluate the wear depth for multilayer coatings by the mass loss distribution in layers. The article’s primary purpose is to develop a mathematical method for assessing the value of wear for multilayer steel-based coatings. The study material is a multilayer coating applied to steel DIN C80W1. The research was performed using up-to-date laboratory equipment. Nitrogenchroming has been realized under overpressure in two successive stages: nitriding for 36 h at temperature 540 °C and chromizing during 4 h at temperature 1050 °C. The complex analysis included several options: X-ray phase analysis, local micro-X-ray spectral analysis, durometric analysis, and determination of wear resistance. These analyses showed that after nitrogenchroming, the three-layer protective coating from Cr23C6, Cr7C3, and Cr2N was formed on the steel surface. Spectral analysis indicated that the maximum amount of chromium 92.2% is in the first layer from Cr23C6. The maximum amount of carbon 8.9% characterizes the layer from Cr7C3. Nitrogen is concentrated mainly in the Cr2N layer, and its maximum amount is 9.4%. Additionally, it was determined that the minimum wear is typical for steel DIN C80W1 after nitrogenchroming. The weight loss of steel samples by 25 mg was obtained. This value differs by 3.6% from the results evaluated analytically using the developed mathematical model of wear of multilayer coatings after complex metallization of steel DIN C80W1. As a result, the impact of the loading mode on the wear intensity of steel was established. As the loading time increases, the friction coefficient of the coated samples decreases. Among the studied samples, plates from steel DIN C80W1 have the lowest friction coefficient after nitrogenchroming. Additionally, a linear dependence of the mass losses on the wearing time was obtained for carbide and nitride coatings. Finally, an increase in loading time leads to an increase in the wear intensity of steels after nitrogenchroming. The achieved scientific results are applicable in developing methods of chemical-thermal treatment, improving the wear resistance of multilayer coatings, and strengthening highly loaded machine parts and cutting tools.


2021 ◽  
pp. 109978
Author(s):  
Naqash Ali ◽  
Liqiang Zhang ◽  
Hongwei Zhou ◽  
Aonan Zhao ◽  
Chaojie Zhang ◽  
...  

2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document