Electrospark Alloying of Carbon Steel with WC-Co-Al2O3: Deposition Technique and Coating Properties

2014 ◽  
Vol 874 ◽  
pp. 101-106 ◽  
Author(s):  
Norbert Radek ◽  
Augustín Sladek ◽  
Jozef Broncek ◽  
Izabela Bilska ◽  
Agnieszka Szczotok

The paper is concerned with the performance properties of electrospark deposited coatings. The properties were assessed by analyzing the coating microstructure, X-ray diffraction, microhardness, roughness and bonding strength.The studies were conducted using WC-Co-Al2O3electrodes produced by sintering nanostructural powders. The anti-wear coatings were electro-spark deposited over C45 carbon steel by means of an EIL-8A. These coatings are likely to be applied to increase the abrasive wear resistance of tools and machine parts.

2015 ◽  
Vol 818 ◽  
pp. 61-64 ◽  
Author(s):  
Norbert Radek ◽  
Jozef Bronček ◽  
Peter Fabian ◽  
Jacek Pietraszek ◽  
Krzysztof Antoszewski

The paper is concerned with the performance properties of electro-spark deposited coatings, which were determined basing on microstructural and roughness analysis and application tests. The studies were conducted using of the tungsten carbide-ceramic electrodes produced by the powder metallurgy hot pressing route. The anti-wear coatings were electro-spark deposited over C45 carbon steel by means of an EIL-8A. These coatings are likely to be applied to increase the abrasive wear resistance of tools and machine parts.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2014 ◽  
Vol 622-623 ◽  
pp. 174-178
Author(s):  
Ahmed Ismail Zaky Farahat ◽  
Mohamed Kamal Elfawkhry

Two alloys of steel containing nominally 0.45C-1.0Si-2.0Mn-0.8Al and 1.2Al were cast in open air induction furnace. Dilatation testing was carried out to recognize the effect on Aluminum on the different critically transformation temperatures. The alloys were hot forged at 1200°C and then subjected to different cooling rates. Mechanical testing was carried out at room temperature. Optical and SEM microstructure were observed. X-ray diffraction was conducted to observe the microstructure constituents.


Author(s):  
M.T. Blatchford ◽  
A.J. Horlock ◽  
D.G. McCartney ◽  
P.H. Shipway ◽  
J.V. Wood

Abstract In this paper, the production of NiCr-TiC powder by SHS, suitable for HVOF spraying, is discussed together with results on the microstructure and coating properties. Compacts for SHS were prepared by mixing elemental Ti and C with pre-alloyed Ni-20wt.% Cr powder to give an overall composition of 35wt.% NiCr and 65wt.% TiC. These were then ignited and a self-sustaining reaction proceeded to completion. Reacted compacts were crushed, sieved, and classified to give feedstock powders in size ranges of 10-45 µm and 45-75 µm. All powder was characterized prior to spraying based on particle size distribution, x-ray diffraction (XRD), and scanning electron microscopy (SEM/EDS). Thermal spraying was performed using both H2 and C3H6 as fuel gases in a UTP/Miller Thermal HVOF system. The resulting coatings were characterized by SEM and XRD analysis, and the microstructures correlated with powder size and spray conditions. Abrasive wear was determined by a modified 'dry sand rubber wheel' (DSRW) test and wear rates were measured. It has been found that wear rates comparable to those of HVOF sprayed WC-17wt% Co coatings can be achieved.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
E. Hamzah ◽  
C. L. Khohr ◽  
Ahmad Abdolahi ◽  
Z. Ibrahim

In this work, the iron bacteria were cultured and inoculated into the cooling water before immersion, and low carbon steel coupons were immersed for one month. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated using scanning electron microscopy (SEM), x-ray diffraction spectroscopy (XRD) and weight loss methods. SEM results showed that large amounts of corrosion products and heterogeneous biofilm layer were formed on the coupon surface. SEM also revealed the uniform-pitting corrosion on the steel surface due to bacteria colonization. XRD results show that the main constituents present in corrosion product are composed of iron oxides and iron hydroxides. 


2011 ◽  
Vol 1307 ◽  
Author(s):  
M. Sajjad ◽  
H. X. Zhang ◽  
P. X. Feng

ABSTRACTThe synthesis of boron nitride nanowires on silicon (Si) and nanorods on molybdenum (Mo) substrates at the same experimental conditions was composed. Fine tip nanowires with diameters around 50 nm were produced on Si substrates, whereas, nanorods with diameter around 100 nm were formed on Mo substrates. The change in length from 5 μm to 100 μm for nanowires and 0.2 μm to 0.8μm for nanorods following variation of substrate temperature were studied systematically.Scanning Electron Microscopy was used to analyze the surface images of BN nanowires and nanorods. Energy Dispersive X-Ray spectroscopy (EDS) was used to analyze boron and nitrogen concentration in the samples. The crystal structures of BN samples were investigated using Raman spectroscopy and x-ray diffraction. The experimental results showed that the nanorods are hexagonal mixed with cubic, whereas the nanowires are hexagonal.


1973 ◽  
Vol 16 (94) ◽  
pp. 639-646 ◽  
Author(s):  
Hisashi OHUCHIDA ◽  
Akio NISHIOKA ◽  
Masato NAGAO

Sign in / Sign up

Export Citation Format

Share Document