scholarly journals Size Effect on Cleavage Crack Initiation Sites and Fracture Toughness (2nd Report, Result for Low-Toughness Region of SM400C Steel).

1996 ◽  
Vol 62 (598) ◽  
pp. 1382-1388
Author(s):  
Kiichi TSUJI ◽  
Yuuji AOYAMA ◽  
Hiroshi MIMURA ◽  
Kotoji ANDO
Author(s):  
Marjorie EricksonKirk ◽  
Mark EricksonKirk ◽  
Tim Williams

Models to predict the fracture and arrest behavior of ferritic steels, particularly those in use in the nuclear industry, have long been under development. The current, most widely accepted model of fracture toughness behavior is the ASTM E1921-02 “Master Curve” that is used to predict the variation of the mean cleavage fracture toughness with temperature in the transition temperature region as well as predicting the scatter of data about the mean at any given temperature. Recently, models describing the variation of arrest fracture toughness and of ductile initiation toughness with temperature have also been proposed. A study has been conducted with the goal of assessing how the scatter in cleavage initiation toughness may vary with temperature and level of irradiation embrittlement, which utilizes the crack arrest and ductile crack initiation models to redefine limits of applicability of the Master Curve-assumed Weibull distribution by developing empirically-derived interrelationships between the three models. These relationships are expected as all three parameters, KIc, KIa, and JIc, are controlled by the flow behavior of the material. There is a physical basis for viewing the crack arrest toughness as an absolute lower bound to the distribution of crack initiation toughness values for a fixed material condition and temperature. This physically based relationship, borne of the fact that both cleavage crack initiation toughness and cleavage crack arrest toughness are controlled by dislocation mobility, has brought about the suggestion that crack arrest toughness could be used to modify the lower tails of the crack initiation fracture toughness distribution. Using both empirical evidence and a hardening model proposed by Natishan and Wagenhofer, we investigate the relationship between initiation and arrest toughness and the implications on use of toughness models.


2021 ◽  
Author(s):  
S. Pothana ◽  
G. Wilkowski ◽  
S. Kalyanam ◽  
J. K. Hong ◽  
C. J. Sallaberry

Abstract A new approach was implemented to confirm the start of ductile tearing relative to assessments by other methods such as direct-current Electric Potential (d-c EP) method in coupon specimens. This approach was developed on the Key-Curve methodology by Ernst/Joyce and is similar to the ASTM E-1820 Load Normalization procedure used to determine J-R curves directly from load versus Load-Line Displacement (LLD) record of the test specimen. It is consistent with Deformation Plasticity relationships for fully plastic behavior. Using this Experimental Key-Curve method, crack initiation can be determined directly from load versus LLD data or load versus Crack-Mouth Opening Displacement (CMOD) obtained from a fracture test without the need for additional instrumentation required for crack initiation detection. It is based on the fact that plastic deformation of homogeneous metals at the crack tip follows a power-law function until the crack tearing initiates. Crack tearing initiation is determined at the point where the power-law fit to the load versus plastic part of CMOD or LLD curve deviates from the total experimental load versus plastic-CMOD or LLD curve. The procedure for fitting of the data requires some care to be exercised such that the fitted data is beyond the elastic region and early small-scale plastic region of the Load-CMOD or Load-LLD curve but include data before crack initiation. An iterative regression analysis was done to achieve this, which is shown in this paper. The iterative fitting in this region typically results with a coefficient of determination (R2) values that are greater than 0.990. This method can be either used in conjunction with other methods such as direct-current Electric Potential (d-c EP) or unloading-compliance methods as a secondary (or primary) confirmation of crack tearing initiation (and even for crack growth); or can be used alone when other methods cannot be used. Furthermore, when using instrumentation methods for determining crack-initiation such as d-c EP method in a fracture toughness test, it is good to have a secondary confirmation of the initiation point in case of instrumentation malfunction or high signal to noise ratio in the measured d-c EP signals. In addition, the Experimental Key-Curve procedure provides relatively smooth data for the fitting procedure, while unloading-compliance data when used to get small crack growth values frequently has significant variability, which is part of the reason that JIC by ASTM E1820 is determined using an offset with some growth past the very start of ductile tearing. In this work, the Experimental Key-Curve method had been successfully used to determine crack tearing initiation and demonstrate the applicability for different fracture toughness specimen geometries such as SEN(T), and C(T) specimens. In all the cases analyzed, the Experimental Key-Curve method gave consistent results that were in good agreement with other crack tearing initiation measuring method such as d-c EP but seemed to result in less scatter.


1993 ◽  
Vol 66 (4) ◽  
pp. 634-645
Author(s):  
N. Nakajima ◽  
J. L. Liu

Abstract The effect of gel on the fracture toughness of four PVC/NBR (50/50) blends was characterized by two different J- integral methods. Three of these blends are compatible blends with 33% acrylonitrile in NBRs, and the fourth with 21% acrylonitrile content, is an incompatible blend. Two types of gel are involved in this study microgels and macrogels. The J-integral methods are (1) conventional method proposed by Bagley and Landes and (2) crack initiation locus method proposed by Kim and Joe. The same load-displacement curves are used in both methods. However, the latter eliminates the energy dissipation away from the crack tip in the determination of Jc, while the former does not. Both methods produced almost the same results indicating that the energy dissipation away from the crack tip is negligible in these samples. The fracture toughness of a macrogel-containing blend is much greater than that of a microgel-containing blend, which, in turn, is only slightly greater than that of a gel-free blend. This implies that the two gel-containing blends have different fracture processes. The incompatible blend has the lowest fracture toughness due to weak interaction at the boundaries of the two phases.


2021 ◽  
Author(s):  
YAO QIAO ◽  
QIWEI ZHANG ◽  
TROY NAKAGAWA ◽  
MARCO SALVIATO

This work proposes an investigation on size effects in micro-scale splitting crack initiation and propagation and their consequences on the macro-scale structural behavior carbon-fiber reinforced polymers under transverse tension. Towards this goal, size effect tests were experimentally conducted on both notch-free [90]n composites and specimens with different notch types under three-point bending. The mechanical tests were followed by morphological studies to identify the micro-scale damage mechanisms and their evolution. The results clearly show that splitting crack initiation in the transverse direction of composites not only happens at the fiber/matrix interface but also in the matrix. Moreover, the subsequent development of these damage mechanisms can depend on the structure size. This interesting phenomenon inherently leads to size-dependent structural behavior which can be described through Baznt’s Size Effect Laws. This study on the splitting crack initiation and propagation can provide unprecedented information for the calibration and validation of micromechanical models for the damage behavior of fiber composites at the microscale.


2003 ◽  
Vol 12 (4) ◽  
pp. 096369350301200 ◽  
Author(s):  
R. Ramesh Kumar ◽  
P.N. Dileep ◽  
S. Renjith ◽  
G. Venkateswara Rao

Intralaminar fracture toughness of a fibre-reinforced angle ply and cross ply laminates are generally obtained by testing compact tension specimen and theoretically predicted using the well-known MCCI approach. The crack initiation direction, which is treated as a branch direction for the theoretical prediction, is an apriori. A conservative estimation on the toughness value obtained by considering branch crack angle corresponding to each fibre orientation in a laminate shows a gross error with respect to test data. In the present study a new criterion for the prediction of crack initiation angle is arrived at based on Tsai-Hill minimum strain energy density criterion. This shows a very good agreement with test data available in literature on fracture toughness of various multilayered composites with large size cracks with a/w ≥ 0.3. It is interesting to note that in a multilayered composite a simple method of prediction in which crack initiation direction is assumed to be the fibre orientation that is close to the initial crack direction gives a good estimation of the intralaminar fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document