The Interrelationships of KIa, KIc, and JIc, and the Implications of These Relationships on Use of Fracture Models Over the Ranges of Hardening Observed in Ferritic Steels

Author(s):  
Marjorie EricksonKirk ◽  
Mark EricksonKirk ◽  
Tim Williams

Models to predict the fracture and arrest behavior of ferritic steels, particularly those in use in the nuclear industry, have long been under development. The current, most widely accepted model of fracture toughness behavior is the ASTM E1921-02 “Master Curve” that is used to predict the variation of the mean cleavage fracture toughness with temperature in the transition temperature region as well as predicting the scatter of data about the mean at any given temperature. Recently, models describing the variation of arrest fracture toughness and of ductile initiation toughness with temperature have also been proposed. A study has been conducted with the goal of assessing how the scatter in cleavage initiation toughness may vary with temperature and level of irradiation embrittlement, which utilizes the crack arrest and ductile crack initiation models to redefine limits of applicability of the Master Curve-assumed Weibull distribution by developing empirically-derived interrelationships between the three models. These relationships are expected as all three parameters, KIc, KIa, and JIc, are controlled by the flow behavior of the material. There is a physical basis for viewing the crack arrest toughness as an absolute lower bound to the distribution of crack initiation toughness values for a fixed material condition and temperature. This physically based relationship, borne of the fact that both cleavage crack initiation toughness and cleavage crack arrest toughness are controlled by dislocation mobility, has brought about the suggestion that crack arrest toughness could be used to modify the lower tails of the crack initiation fracture toughness distribution. Using both empirical evidence and a hardening model proposed by Natishan and Wagenhofer, we investigate the relationship between initiation and arrest toughness and the implications on use of toughness models.

1996 ◽  
Vol 118 (4) ◽  
pp. 292-299 ◽  
Author(s):  
L. Malik ◽  
L. N. Pussegoda ◽  
B. A. Graville ◽  
W. R. Tyson

The awareness of the presence of local brittle zones (LBZs) in the heat-affected zone (HAZ) of welds has led to the requirements for minimum initiation (CTOD) toughness for the HAZ for critical applications (API RP 2Z, CSA S473). Such an approach, however, is expensive to implement and limits the number of potential steel suppliers. A fracture control philosophy that is proposed to be an attractive alternative for heat-affected zones containing LBZs is the prevention of crack propagation rather than of crack initiation. Such an approach would be viable if it could be demonstrated that cracks initiated in the LBZs will be arrested without causing catastrophic failure, notwithstanding the low initiation (CTOD) toughness resulting from the presence of LBZs. Unstable propagation of a crack initiating from an LBZ requires the rupture of tougher microstructural regions surrounding the LBZ in HAZ, and therefore the CTOD value reflecting the presence of LBZ is unlikely to provide a true indication of the potential for fast fracture along the heat-affected zone. Base metal specifications (CSA S473) usually ensure that small unstable cracks propagating from the weld zone into the base metal would be arrested. Past work has also shown that unstable crack initiation resulting from interaction of surface semi-elliptical cracks parallel to the fusion boundary with the local brittle zones can get arrested once the crack has popped through the depth of the LBZ. However, the potential for arrest when a through-thickness HAZ crack runs parallel to the fusion boundary, and thus parallel to the LBZs, has not been examined previously. To investigate the likelihood of fast fracture within the HAZ, a test program has been carried out that involved performing compact plane strain (ASTM E1221) and plane stress crack arrest tests on a heataffected zone that contained LBZs, and thus exhibited unacceptable low CTOD toughness for resistance to brittle fracture initiation. The results indicated that in contrast to the initiation toughness (CTOD toughness), the crack arrest toughness was little influenced by the presence of local brittle zones. Instead, the superior toughness of the larger proportion of finer-grain HAZ surrounding the LBZ present along the crack path has a greater influence on the crack arrest toughness. It further seems that there may be potential to estimate the HAZ crack arrest toughness from more conventional smaller-scale laboratory tests, such as conventional or precracked instrumented Charpy impact tests.


Author(s):  
Mark T. EricksonKirk ◽  
MarjorieAnn EricksonKirk

Models to predict the fracture and arrest behavior of ferritic steels have long been under development. The current, most widely accepted model of fracture toughness behavior is the ASTM E1921-02 “Master Curve” that is used to predict the variation of the median cleavage fracture toughness (KJc) with temperature in the transition temperature region, as well as predicting the scatter of data about the median at any given temperature. Recently, models describing the variation of crack arrest fracture toughness (KIa) and of ductile initiation fracture toughness (JIc) with temperature have also been proposed. Moreover, models are also available that relate these various temperature dependencies to each other, and relate them all a common parameter, the cleavage crack initiation fracture toughness index temperature To. Research work continues to better quantify these relationships and to more firmly understand their physical bases. Nevertheless, the ample empirical evidence on which the models are based and the existing physical understanding underlying the models suggests that they can be used as a tool in both fitness-for-service assessment and in the design of experiments conducted to investigate the fracture toughness of ferritic materials. While still being developed, these toughness-based models offer clear advantages relative to alternative (correlative) approaches in terms of reduced prediction uncertainty. In this paper we amalgamate the results of previous publications to provide an algebraic expression for the variation of KJc, KIa, and JIc with temperature that includes explicit quantification of the uncertainty in each variable. We also discuss the implications and potential applications of this combined model.


Author(s):  
Marjorie Erickson ◽  
Mark Kirk

Abstract Section XI of the ASME Boiler and Pressure Vessel Code provides KIc and KIa fracture toughness models for ferritic steels. These models are based on linear elastic fracture mechanics methods and were initially developed in the 1970s; they remain largely unchanged since that time. Recently, a modification to Code Case (CC) N-830 has been proposed to provide alternative fracture toughness models for use in the flaw evaluation methodologies of ASME Section XI Nonmandatory Appendices A and K. The integrated models contained in proposed Code Case revision predict the mean trends and scatter of the fracture toughness behavior of ferritic steels throughout the temperature range from the lower shelf to the upper shelf. These models include the transition fracture toughness Master Curve and crack arrest master curve approaches that describe the temperature dependence and scatter in KJc and KIa, respectively in the lower transition temperature region. Also included is a model describing the temperature dependence and scatter of JIc on the upper shelf. Finally, linkage models quantify the inter-relationships between these toughness metrics and how they change due to the irradiation-induced hardening. Together, these models describe the temperature dependence and scatter of fracture toughness initiation and arrest behavior for all ferritic reactor pressure vessel (RPV) steels from lower shelf through transition to the upper shelf, all indexed to a single parameter: T0. In late 2017 the Electric Power Research Institute (EPRI) published a report, MRP-418, providing the technical basis for these revisions to CC N-830. Nuclear Regulatory Commission (NRC) staff review of the revised Code Case and MRP-418 resulted in substantive questions regarding validation and range of applicability of the various toughness models. An on-going effort addresses these concerns, and a revision to MRP-418 scheduled for publication later in 2019 will summarize that work. This paper describes the efforts of the WGFE CC-N-830 group to respond to the NRC’s comments, and summarizes responses to some of the comments.


Author(s):  
Jessica Taylor ◽  
Philippa Moore ◽  
Ali Mehmanparast ◽  
Rob Kulka

Abstract Modern high Charpy toughness steels can nonetheless show low crack arrest toughness[1]. In this paper, the relationship between initiation and arrest toughness is investigated in five different carbon steels, including S355 structural steels, X65 pipeline steel, and high strength reactor pressure vessel, RPV, steels. The results from small-scale mechanical tests, including instrumented Charpy, drop weight Pellini, fracture toughness, and tensile testing (including STRA in the through-thickness direction) were used to determine the behaviour of the different steels in terms of initiation fracture toughness and crack arrest toughness parameters. There was no correlation between the upper shelf initiation toughness and the arrest toughness when the results from the five steels were collated. The mechanical test results were then correlated to the steels’ microstructural characteristics, including parent metal microstructure, average grain size and grain aspect ratio to identify the relative roles of microstructure and texture in the fracture initiation and arrest performance of carbon steels.


2002 ◽  
Vol 33 (8) ◽  
pp. 2615-2622 ◽  
Author(s):  
Jae-Il Jang ◽  
Baik-Woo Lee ◽  
Jang-Bog Ju ◽  
Dongil Kwon ◽  
Woo-Sik Kim

Author(s):  
Marjorie Erickson

Abstract The current best-estimate model describing the fracture toughness of ferritic steels is the Master Curve methodology standardized in ASTM E1921. Shortly following standardization by ASTM, efforts were undertaken to incorporate this best-estimate model into the framework of the ASME Code to reduce the conservatisms resulting from use of a reference temperature based on the nil-ductility temperature (RTNDT) to index the plane strain fracture initiation toughness (KIc). The reference temperature RTT0, which is based on the ASTM E1921-defined T0 value, was introduced in ASME Code Cases N-629 (replaced by Code Case N-851) and N-631 to replace RTNDT for indexing the ASME KIc curve. Efforts are continuing within the ASME Code to implement direct use of the Master Curve model; using the T0 reference temperature to index an elastic-plastic, KJc fracture toughness curve. Transitioning to a direct T0-based fracture toughness assessment methodology requires the availability of T0 estimates for all materials to be assessed. The historical Charpy and NDT-based regulatory approach to characterizing toughness for reactor pressure vessel (RPV) steels results in a lack of T0 values for a large population of the US nuclear fleet. The expense of the fracture toughness testing required to estimate a valid T0 value makes it unlikely that T0 will ever be widely available. Since direct implementation of best-estimate, fracture toughness models in codes and regulatory actions requires an estimate of T0 for all materials of interest it is necessary to develop an alternative means of estimating T0. A project has been undertaken to develop a combined model approach to estimating T0 from data that may include limited elastic-plastic fracture toughness KJc, Charpy, tensile, ductile initiation toughness, arrest toughness, and/or nil-ductility temperature data. Using correlations between these properties and T0 a methodology for combining estimates of T0 from several sources of data was developed. T0 estimates obtained independently from the Master Curve model, the Simple T28J correlation model, and a more complex Charpy correlation model were combined using the Mixture Probability Density Function (PDF) method to provide a single estimate for T0. Using this method, the individual T0 estimates were combined using weighting factors that accounted for sample size and individual model accuracy to optimize the accuracy and precision of the combined T0 estimate. Combining weighted estimates of T0 from several sources of data was found to provide a more refined estimate of T0 than could be obtained from any of the models alone.


Author(s):  
Uwe Mayer ◽  
Thomas Reichert ◽  
Johannes Tlatlik

The rate-dependent reference temperature T0,x characterizes the fracture toughness of ferritic steels at the onset of cleavage. Fracture toughness values KJc,d were determined according to the Annex A1 of ASTM E1921 [1] which refers to the high rate annexes A14 and A17 of ASTM E1820 [2]. Results of extensive dynamic fracture toughness experiments at various loading rates, temperatures, specimen types and sizes revealed shortcomings in the transferability of the shape of the Master Curve under quasi-static conditions to elevated loading rates. In particular, the quasi-static Master Curve predicts lower fracture toughness values towards higher temperatures than experimentally observed under dynamic loading causing a steeper Master Curve shape. Fractographic examinations proved the relevance of local crack arrest under dynamic loading conditions, which is consistent with the view of the parallelism of dynamic fracture probability and probability of arrest.


Author(s):  
Sergio Cicero ◽  
Tiberio Garcia ◽  
Virginia Madrazo

This paper presents the Notch-Master Curve as a model for the prediction of the apparent fracture toughness of ferritic steels in notched conditions and operating at temperatures corresponding to their ductile-to-brittle transition zone. The Notch-Master Curve combines the Master Curve of the material in cracked conditions and the notch corrections provided by the Theory of Critical Distances. In order to validate the model, the fracture resistance results obtained in fracture tests performed on notched CT and SENB specimens are presented. The results gathered here cover four ferritic steels (S275JR, S355J2, S460M and S690Q), three different notch radii (0.25 mm, 0.50 mm and 2.0 mm) and three different temperatures within the corresponding ductile-to-brittle transition zone. The results demonstrate that the Notch Master Curve provides good predictions of the fracture resistance in notched conditions for the four materials analyzed.


Author(s):  
Anssi Laukkanen ◽  
Pekka Nevasmaa ◽  
Heikki Keina¨nen ◽  
Kim Wallin

Local approach methods are to greater extent used in structural integrity evaluation, in particular with respect to initiation of an unstable cleavage crack. However, local approach methods have had a tendency to be considered as methodologies with ‘qualitative’ potential, rather than quantitative usage in realistic analyses where lengthy and in some cases ambiguous calibration of local approach parameters is not feasible. As such, studies need to be conducted to illustrate the usability of local approach methods in structural integrity analyses and improve upon the transferability of their intrinsic, material like, constitutive parameters. Improvements of this kind can be attained by constructing improved models utilizing state of the art numerical simulation methods and presenting consistent calibration methodologies for the constitutive parameters. The current study investigates the performance of a modified Beremin model by comparing integrity evaluation results of the local approach model to those attained by using the constraint corrected Master Curve methodology. Current investigation applies the Master Curve method in conjunction with the T-stress correction of the reference temperature and a modified Beremin model to an assessment of a three-dimensional pressure vessel nozzle in a spherical vessel end. The material information for the study is extracted from the ‘Euro-Curve’ ductile to brittle transition region fracture toughness round robin test program. The experimental results are used to determine the Master Curve reference temperature and calibrate local approach parameters. The values are then used to determine the cumulative failure probability of cleavage crack initiation in the model structure. The results illustrate that the Master Curve results with the constraint correction are to some extent more conservative than the results attained using local approach. The used methodologies support each other and indicate that with the applied local approach and Master Curve procedures reliable estimates of structural integrity can be attained for complex material behavior and structural geometries.


Sign in / Sign up

Export Citation Format

Share Document