scholarly journals Wetting behavior of two-dimensional meniscus formed under a holizontal plate. (Effect of infinitesimal roughness on a solid surface).

1989 ◽  
Vol 55 (516) ◽  
pp. 2397-2403
Author(s):  
Kenji KATOH ◽  
Hideomi FUJITA
1995 ◽  
Vol 117 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Kenji Katoh ◽  
Hideomi Fujita ◽  
Hideharu Sasaki

The purpose of this study is to investigate macroscopic wetting behavior and to verify the validity of the assumption made in the analysis of the preceding report that the complicated effects of the microscopic structures of the solid surface such as roughness or heterogeneity on the macroscopic wetting behavior are simply represented by the values of the apparent contact angles. The unstable phenomenon of a two-dimensional meniscus under a horizontal plate, in which the meniscus falls spontaneously at a certain height of the plate, is considered theoretically from a thermodynamic viewpoint. The results of the analysis based on the above assumption agree with those by an analysis in which the effect of microscopic structures of the solid surface, such as roughness and heterogeneity, are taken into consideration. Therefore, the validity of the assumption made in the preceding report is verified.


2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.


1990 ◽  
Vol 112 (3) ◽  
pp. 289-295 ◽  
Author(s):  
K. Katoh ◽  
H. Fujita ◽  
H. Sasaki

Macroscopic wetting behavior is investigated theoretically from a thermodynamic viewpoint. The axisymmetric liquid meniscus formed under a conical solid surface is chosen as the subject of the theoretical analysis. Using the meniscus configuration obtained by the Laplace equation, the total free energy of the system is calculated. In the case of the half vertical angle of the cone φ = 90 deg (horizontal plate), the system shows thermodynamic instability when the meniscus attaches to the solid surface at the contact angle. This result, unlike the conventional view, agrees well with the practical wetting behavior observed in this study. On the other hand, when 0 deg < φ < 90 deg, the system shows thermodynamic stability at the contact angle. However, when the solid cone is held at a position higher than the critical height from a stationary liquid surface, the system becomes unstable. It is possible to measure the contact angle easily using this unstable phenomenon.


2012 ◽  
Author(s):  
El–Harbawi M. ◽  
Mustapha S. ◽  
Idris A. ◽  
Jameel A.T. ◽  
T.G. Chuah

Tenaga lebihan bebas Gibb per unit luas (ΔG) bagi suatu saput nipis yang tulen, tanpa cas pada satu sokongan hanya diterbitkan daripada interaksi antara molekul apolar (Lifshitz - van der Waals) dan polar (acid-bes). Interaksi polar dapat dinyatakan secara berasingan sebagai tekanan penghidratan, interaksi hidrofobik dan intekrasi asid-bes. Jumlah tenaga lebihan bebas Gibb per unit luas (ΔG) bagi satu saput nipis pada satu lapisan bergantung kepada ketebalan saput, dan angkali penyebaran apolar dan polar untuk sistem tersebut. Saput dimodelkan sebagai cecair Newtonian 2-dimensi dengan ketumpatan tetap, ρ, dan kelikatan, μ, mengalir di atas satu permukaan mengufuk. Ketebalan purata saput cecair, h0, dianggapkan cukup nipis supaya kesan graviti boleh diabaikan dan melambung atas oleh gas pasif dan menyambung secara lateral hingga infiniti (Model dua-dimensi). Daya badan yang disebut dalam persamaan Navier-Stokes adalah diubahsuaikan oleh kandungan interaksi antara molekul lebihan (daya apolar dan polar) antara saput bendalir dan permukaan pepejal bergantung kepada daya-daya apolar dan polar. Persamaan Navier-Stokes telah diubahsuai dengan keadaan sempadan berkaitan diselesaikan bawah kaedah pendekatan gelombong panjang untuk memperolehi persamaan perkembangan tak-linear bagi saput antara permukaan. Daya apolar dan polar telah didapati memainkan peranan pencirian atas saput nipis dan kesan utama pada sifat tenaga lebihan bebas, kadar penubuhan, kadar penubuhan maksimum, gelombong neutral, nombor gelombang yang dominan, jarak gelombong dominan dan masa memecah. Oleh demikian, teori linear adalah kurang sesuai untuk menyatakan kestabilan pencirian selaput. Kata kunci: Daya apolar, daya polar, kestabilan linear, kadar pertumbuhan, masa memecah The total excess free energy per unit area (ΔG) of a pure, uncharged thin film on a support is solely derived from the apolar (Lifshitz - van der Waals) and polar (acid-base) intermolecular interactions. Polar interactions are variously described as the hydration pressure, hydrophobic interaction and acid base interaction. The total free excess energy (per unit area) of a thin film on a substrate depends on the film thickness, and the apolar and polar spreading coefficients for the system. The film is modelled as a two-dimensional Newtonian liquid of constant density, ρ and viscosity, μ, flowing on a horizontal plane. The liquid film of mean thickness, h0, is assumed to be thin enough to neglect the gravity effect and bounded above by a passive gas and laterally extends to infinity (two-dimensional model). The body force term in the Navier-Stokes equation is modified by the inclusion of excess intermolecular interactions (apolar and polar forces) between fluid film and the solid surface owing to apolar and polar forces. The modified Navier-Stokes equation with associated boundary conditions is solved under long wave approximation method to obtain a nonlinear equation of evolution of the film interface. The apolar and polar forces were found to play the dominant role in characteristic of thin films and the main effect on the behavior of the excess free energy, growth rate, maximum growth rate, neutral wave, dominant wavenumber, dominant wavelength and rupture time. Hence, the linear theory is inadequate to describe the stability characteristics of films. Key words: Apolar force, polar force, linear stability, growth rate, rupture time


1952 ◽  
Vol 5 (2) ◽  
pp. 288
Author(s):  
RG Wylie

Hysteresis phenomena associated with the adsorption of gases on solid surfaces are usually explained in terms of three-dimensional capillary effects or with more or less unspecific reference to phase transitions. It is shown that hysteresis effects are to be expected when two dimensional phase transitions occur on solids. In the connection, the thermodynamic equation governing the equilibrium of small, incompressible two-dimensional phases is derived. Such phases can form on an imperfect solid surface in an irreversible manner and, as calculation shows, can contribute significantly to the hysteresis of adsorption. In some cases the phase change may be responsible for the whole effect. The diffuseness of first-order phase transitions may be due to the same mechanism.


2007 ◽  
pp. 2917 ◽  
Author(s):  
Sungjin Park ◽  
Yunha Lee ◽  
Bumjung Kim ◽  
Jisun Lee ◽  
Youngdo Jeong ◽  
...  

2001 ◽  
Vol T89 (1) ◽  
pp. 41 ◽  
Author(s):  
T. Shoji ◽  
M. Fujigaya ◽  
H. Tomita ◽  
M. Aramaki ◽  
Y. Sakawa

2015 ◽  
Vol 2015.68 (0) ◽  
pp. 135-136
Author(s):  
Yukihiro YONEMOTO ◽  
Shoji NAGASE ◽  
Takahiro ISHINUKI ◽  
Takuya SAKAGUCHI ◽  
Tomoaki KUNUGI

Sign in / Sign up

Export Citation Format

Share Document