scholarly journals Torsional vibration characteristics of the marine propulsion shafting system containing epicyclic gears with elastically supported internal gear. 1st report Experimental results.

1987 ◽  
Vol 53 (485) ◽  
pp. 11-14
Author(s):  
Seiji ARII ◽  
Teruaki HIDAKA ◽  
Keiichi ODA
2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

Analysis of the linear vibration characteristics of unconstrained rotating isotropic thin disks leads to the important concept of “critical speeds.” These critical rotational speeds are of interest because they correspond to the situation where a natural frequency of the rotating disk, as measured by a stationary observer, is zero. Such speeds correspond physically to the speeds at which a traveling circumferential wave, of shape corresponding to the mode shape of the natural frequency being considered, travel around the disk in the absence of applied forces. At such speeds, according to linear theory, the blade may respond as a space fixed stationary wave and an applied space fixed dc force may induce a resonant condition in the disk response. Thus, in general, linear theory predicts that for rotating disks, with low levels of damping, large responses may be encountered in the region of the critical speeds due to the application of constant space fixed forces. However, large response invalidates the predictions of linear theory which has neglected the nonlinear stiffness produced by the effect of in-plane forces induced by large displacements. In the present paper, experimental studies were conducted in order to measure the frequency response characteristics of rotating disks both in an idling mode as well as when subjected to a space fixed lateral force. The applied lateral force (produced by an air jet) was such as to produce displacements large enough that non linear geometric effects were important in determining the disk frequencies. Experiments were conducted on thin annular disks of different thickness with the inner radius clamped to the driving arbor and the outer radius free. The results of these experiments are presented with an emphasis on recording the effects of geometric nonlinearities on lateral frequency response. In a companion paper (Khorasany and Hutton, 2010, “Vibration Characteristics of Rotating Thin Disks—Part II: Analytical Predictions,” ASME J. Mech., 79(4), p. 041007), analytical predictions of such disk behavior are presented and compared with the experimental results obtained in this study. The experimental results show that in the case where significant disk displacements are induced by a lateral force, the frequency characteristics are significantly influenced by the magnitude of forced displacements.


2018 ◽  
Vol 16 (1) ◽  
pp. 944-948 ◽  
Author(s):  
Sinan Maraş ◽  
Mustafa Yaman ◽  
Mehmet Fatih Şansveren ◽  
Sina Karimpour Reyhan

AbstractIn recent years, studies on the development of new and advanced composite materials have been increasing. Among these new technological products, Fiber Metal Laminates (FML), and hybrid structures made of aluminium, carbon, glass or aramid fiber, are preferred especially in the aircraft industry due to their high performance. Therefore, free vibration analysis is necessary for the design process of such structures. In this study, the vibration characteristics of FML for clamped-free boundary conditions were investigated experimentally and numerically. Firstly, numerical results were obtained using Finite Element Method (FEM) and then these results were compared with the experimental results. It was seen that the numerical results were in good agreement with the experimental results. As the theoretical model was justified, the effects of various parameters such as number of layers, fiber orientations, and aluminium layer thickness on the in-plane vibration characteristics of the FML straight beam were analysed using FEM. Thus, most important parameters affecting the vibration characteristics of the hybrid structures were determined.


Author(s):  
D. C. Lee ◽  
J. D. Yu

Under steady state condition, unstable torsional vibration normally does not occur in shafting systems using 4stroke diesel engine due to hysteresis damping of shafting system and relative damping of standard fitted damper. However, the unstable torsional vibration occurs on marine propulsion shafting systems due to slippage of a multi-friction clutch installed between increasing gear box and shaft generator. To identify this unstable vibration and make proper counter measure, the simulation for transient torsional vibration using the Newmark method is introduced in this paper. The mechanism of this unstable vibration is verified by vibration and noise measurements of the shafting system.


2017 ◽  
Vol 12 (5) ◽  
pp. 646-656
Author(s):  
Da Xie ◽  
Junbo Sun ◽  
Yupu Lu ◽  
Yucheng Lou ◽  
Chenghong Gu ◽  
...  

Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


Sign in / Sign up

Export Citation Format

Share Document