scholarly journals Study of structure identification method using sensitivity analysis.

1988 ◽  
Vol 54 (505) ◽  
pp. 2092-2100 ◽  
Author(s):  
Ichiro Hagiwara ◽  
Kazuo Nagabuchi
2007 ◽  
Vol 11 (4) ◽  
pp. 1249-1266 ◽  
Author(s):  
M. Ratto ◽  
P. C. Young ◽  
R. Romanowicz ◽  
F. Pappenberger ◽  
A. Saltelli ◽  
...  

Abstract. In this paper, we discuss a joint approach to calibration and uncertainty estimation for hydrologic systems that combines a top-down, data-based mechanistic (DBM) modelling methodology; and a bottom-up, reductionist modelling methodology. The combined approach is applied to the modelling of the River Hodder catchment in North-West England. The top-down DBM model provides a well identified, statistically sound yet physically meaningful description of the rainfall-flow data, revealing important characteristics of the catchment-scale response, such as the nature of the effective rainfall nonlinearity and the partitioning of the effective rainfall into different flow pathways. These characteristics are defined inductively from the data without prior assumptions about the model structure, other than it is within the generic class of nonlinear differential-delay equations. The bottom-up modelling is developed using the TOPMODEL, whose structure is assumed a priori and is evaluated by global sensitivity analysis (GSA) in order to specify the most sensitive and important parameters. The subsequent exercises in calibration and validation, performed with Generalized Likelihood Uncertainty Estimation (GLUE), are carried out in the light of the GSA and DBM analyses. This allows for the pre-calibration of the the priors used for GLUE, in order to eliminate dynamical features of the TOPMODEL that have little effect on the model output and would be rejected at the structure identification phase of the DBM modelling analysis. In this way, the elements of meaningful subjectivity in the GLUE approach, which allow the modeler to interact in the modelling process by constraining the model to have a specific form prior to calibration, are combined with other more objective, data-based benchmarks for the final uncertainty estimation. GSA plays a major role in building a bridge between the hypothetico-deductive (bottom-up) and inductive (top-down) approaches and helps to improve the calibration of mechanistic hydrological models, making their properties more transparent. It also helps to highlight possible mis-specification problems, if these are identified. The results of the exercise show that the two modelling methodologies have good synergy; combining well to produce a complete joint modelling approach that has the kinds of checks-and-balances required in practical data-based modelling of rainfall-flow systems. Such a combined approach also produces models that are suitable for different kinds of application. As such, the DBM model considered in the paper is developed specifically as a vehicle for flow and flood forecasting (although the generality of DBM modelling means that a simulation version of the model could be developed if required); while TOPMODEL, suitably calibrated (and perhaps modified) in the light of the DBM and GSA results, immediately provides a simulation model with a variety of potential applications, in areas such as catchment management and planning.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiaonan Gai ◽  
Kaiping Yu

Most of random dynamic loading identification research studies are about the original inverse pseudoexcitation method which does not fundamentally reduce the negative effect of ill-conditioned frequency response function matrix on accuracy of loading identification. This paper describes a new improved method based on weighted average technique to reduce peak errors between identified load spectrum and the actual load spectrum near some natural frequencies. Meanwhile, relative error of root mean square value between identified load and the actual load is reduced. The introduced selection method of threshold value is innovative which is the key of weighted average technique. This improved loading identification method is successfully applied to experiments of cantilever beam and thermal protection composite plate structure. Identification results prove that the proposed method is valid by good agreement between identified power spectrum density and the actual one. Moreover, this method has higher accuracy than inverse pseudoexcitation method in low-frequency band.


2014 ◽  
Vol 609-610 ◽  
pp. 1349-1356
Author(s):  
Li Yong Zhang

The accelerometer is a sensitive inertial component of the inertial navigation system, and its output signal is proportional to the transporters acceleration. In system design and test, the dynamic characteristic of the closed-loop system is an important parameter. At present, the use of wire vibration or angular vibration to provide an input signal cannot meet the amplitude and phase of system testing requirements, and the test cost is high. Therefore, the study of how the dynamic characteristics of electrical simulation test system to give a precise mathematical accelerometer model is an important part of the analysis of the inertial navigation system,which is an effective method to acquire the dynamic characteristics and can be extended to mini inertia instruments. In this paper, we use the system identification method to identify the model of the system. Modeling of the system identification method is to determine the mathematical model of the system by observing the relationship between system inputs and outputs. The content of system identification generally includes four parts which are experimental design, model structure identification, parameter estimation and model test. Circuit simulation test of dynamic character of accelerometer system and model identification method have been applied in practical application. This paper has tested the accuracy of developed system designed by different system identifications.


Sign in / Sign up

Export Citation Format

Share Document