Study on Sound Generating Mechanism Using Vibrational Energy and Sound Energy. 3rd Report. Proposal of Energy Transformation Efficiency of Rectangular Plate from Vibration to Sound.

1996 ◽  
Vol 62 (604) ◽  
pp. 4520-4527
Author(s):  
Noritoshi NAKAGAWA ◽  
Akihiko HIGASHI ◽  
Yasuhisa SEKIGUCHI
1996 ◽  
Vol 100 (4) ◽  
pp. 2596-2596
Author(s):  
Noritoshi Nakagawa ◽  
Akihiko Higashi ◽  
Yasuhisa Sekiguchi

Author(s):  
Donald L. Margolis

Abstract An aircraft engine is an example of a rotating machine whose rotating imbalance will be transmitted as vibrational energy into the structure to which it is attached. There is considerable interest in understanding this energy transmission in order to design mounting systems, both passive and active, which can control this transmission the best possible way in order to reduce structurally borne noise in the cabin. It is a well established fact in acoustics[1] that in order to reduce perceived sound at the listener, the noise transmission path must be severed by 1) eliminating the source of the disturbance (usually difficult if not impossible), 2) preventing propagation of energy into the structure and ultimately to structural surfaces, 3) preventing radiation of sound energy from vibrating surfaces, and 4) preventing radiated sound from reaching the listener. In this paper we address only the prevention of energy transmission from the source into the supporting structure through use of some type of mounting system.


2011 ◽  
Vol 383-390 ◽  
pp. 1647-1652 ◽  
Author(s):  
Dao Jing Wang ◽  
Hong Guang Zhang ◽  
Xiao Na Sun ◽  
Dao Jing Wang

Time-resolved current and voltage measurements for an inductive automotive spark system were made. The measurements were made in air for a range of charge time from 1-8ms, at ambient temperatures. Primary current was measured, so the primary energy can be calculated. Current and voltage signal of secondary circuit was detected, from which the spark energy and energy transformation efficiency can be calculated. Test results show that: when the charge time is 6ms, both the primary energy and spark energy reaches to saturation value, does not advanced any more with the charge time increasing; and the energy transformation efficiency is at an appropriate range.


2017 ◽  
Vol 0 (3) ◽  
pp. 51-55
Author(s):  
Mykola Yakovych Ostroverkhov ◽  
Mykola Oleksandrovych Reutskyi ◽  
Danylo Yaroslavovych Trinchuk

1965 ◽  
Vol 8 (3) ◽  
pp. 223-234 ◽  
Author(s):  
William Melnick

Five subjects with normal middle ear mechanisms, and otosclerotic patients, before and after stapedectomy, matched the loudness of their voices to the loudness of a 125-cps-sawtooth noise. The results showed loudness matching functions with gradual slopes, less than 1.00, for the normal subjects and the patients prior to stapedectomy. Post-surgically, the loudness function for the patients increased in steepness to considerably more than 1.00. These results are explained, most logically, in terms of increased sensitivity of the altered middle ear to sound energy generated by the listener’s own voice.


2001 ◽  
Vol 21 (2) ◽  
pp. 147-163 ◽  
Author(s):  
Hirohide Serizawa ◽  
Kohei Hongo ◽  
Hirokazu Kobayashi

2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


Sign in / Sign up

Export Citation Format

Share Document