scholarly journals Method of Cutting Klingelnberg Spiral Bevel Gears by Using Pseudo-Complementary Crown Gear

2003 ◽  
Vol 69 (685) ◽  
pp. 2514-2521
Author(s):  
Yasuhiro IWAMOTO ◽  
Hisashi TAMURA ◽  
Katsuya TANIFUJI
Author(s):  
V. Simon

The design and advanced manufacture of face-hobbed spiral bevel gears on computer numerical control (CNC) hypoid generating machines is presented. The concept of face-hobbed bevel gear generation by an imaginary generating crown gear is established. In order to reduce the sensitivity of the gear pair to errors in tooth-surfaces and to the mutual position of the mating members, modifications are introduced into the teeth of both members. The lengthwise crowning of teeth is achieved by applying a slightly bigger lengthwise tooth flank curvature of the crown gear generating the concave side of pinion/gear tooth-surfaces, and/or by using tilt angle of the head-cutter in the manufacture of pinion/gear teeth. The tooth profile modification is introduced by the circular profile of the cutting edge of head-cutter blades. An algorithm is developed for the execution of motions on the CNC hypoid generating machine using the relations on the cradle-type machine. The algorithm is based on the condition that since the tool is a rotary surface and the pinion/gear blank is also related to a rotary surface, it is necessary to ensure the same relative position of the head cutter and the pinion on both machines.


2011 ◽  
Vol 101-102 ◽  
pp. 708-712 ◽  
Author(s):  
Zheng Lin ◽  
Li Gang Yao

The general mathematical model of internal meshing spiral bevel gears for nutation drive is studied. Based on conventional enveloping theory and transmission principle, the meshing of two spiral bevel gears in nutation drive was substituted by the meshing of an imaginary rotating crown gear engaging with the external and internal bevel gear respectively. The general mathematical model of crown gear was established. Then the general mathematical model of internal meshing spiral bevel gears is obtained by matrix transformation, which is suitable for a variety of gear tooth profiles. Finally, the mathematical model and 3D modeling of double circular-arc spiral bevel gears are developed.


Author(s):  
Fangyan Zheng ◽  
Lin Hua ◽  
Dingfang Chen ◽  
Xinghui Han

Noncircular bevel gears are applied in variable-speed transmissions with intersecting axes. Since dedicated machines for manufacturing noncircular bevel gears are not available, noncircular bevel gears are normally manufactured using universal computer numerically controlled (CNC) machining centers, resulting in poor productivity. This paper describes a face-milling method for generation of noncircular spiral bevel gears, which is analogous to the generation of spiral bevel and hypoid gears using CNC hypoid gear generators, such as Gleason free-form hypoid generators. As a result, the productivity is significantly improved. Based on the theory of gearing, this paper first describes the basic concept of generation of conjugate noncircular spiral bevel gears. Generation of the tooth surfaces using crown-gear generation concept is analytically discussed with association to the face-milling process of generation of the proposed noncircular spiral bevel gears. The tooth surface geometries are represented by the position vectors and normals. The kinematical model of free-form machines is developed. The machine motion parameters are determined based on the theoretically defined tooth surfaces using the crown-gear generation concept. The developed method is verified by manufacturing a real pair of noncircular spiral bevel gears with satisfactory contact patterns which agree well with those modeled using a commercial cae software program.


Friction ◽  
2021 ◽  
Author(s):  
Zongzheng Wang ◽  
Wei Pu ◽  
Xin Pei ◽  
Wei Cao

AbstractExisting studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions. However, most lubricated transmission components operate in the mixed lubrication region, indicating that both the asperity contact and film lubrication exist on the rubbing surfaces. Herein, a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact. Based on this method, the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically. The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz (dry) contact. In addition, the roughness significantly changes the contact stiffness and damping, indicating the importance of film lubrication and asperity contact. The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point, and both of them are affected by the applied torque and rotational speed. In addition, the middle contact path is recommended because of its comprehensive high stiffness and damping, which maintained the stability of spiral bevel gear transmission.


Author(s):  
Vilmos V. Simon

In this study an attempt is made to predict displacements and stresses in face-hobbed spiral bevel gears by using the finite element method. A displacement type finite element method is applied with curved, 20-node isoparametric elements. A method is developed for the automatic finite element discretization of the pinion and the gear. The full theory of the generation of tooth surfaces of face-hobbed spiral bevel gears is applied to determine the nodal point coordinates on tooth surfaces. The boundary conditions for the pinion and the gear are set automatically as well. A computer program was developed to implement the formulation provided above. By using this program the influence of design parameters and load position on tooth deflections and fillet stresses is investigated. On the basis of the results, obtained by performing a big number of computer runs, by using regression analysis and interpolation functions, equations for the calculation of tooth deflections and fillet stresses are derived.


Sign in / Sign up

Export Citation Format

Share Document