Adaptive data-driven prediction and optimization of tooth flank heat treatment deformation for aerospace spiral bevel gears by considering carburizing-meshing coupling effect

Author(s):  
Han Ding ◽  
Hongping Li ◽  
Rong Huang ◽  
Jinyuan Tang
Author(s):  
V. Simon

The design and advanced manufacture of face-hobbed spiral bevel gears on computer numerical control (CNC) hypoid generating machines is presented. The concept of face-hobbed bevel gear generation by an imaginary generating crown gear is established. In order to reduce the sensitivity of the gear pair to errors in tooth-surfaces and to the mutual position of the mating members, modifications are introduced into the teeth of both members. The lengthwise crowning of teeth is achieved by applying a slightly bigger lengthwise tooth flank curvature of the crown gear generating the concave side of pinion/gear tooth-surfaces, and/or by using tilt angle of the head-cutter in the manufacture of pinion/gear teeth. The tooth profile modification is introduced by the circular profile of the cutting edge of head-cutter blades. An algorithm is developed for the execution of motions on the CNC hypoid generating machine using the relations on the cradle-type machine. The algorithm is based on the condition that since the tool is a rotary surface and the pinion/gear blank is also related to a rotary surface, it is necessary to ensure the same relative position of the head cutter and the pinion on both machines.


Author(s):  
Kazumasa Kawasaki ◽  
Isamu Tsuji

The demand of large-sized spiral bevel gears has increased in recent years and hereafter the demand may increase more and more. The large-sized spiral bevel gears with equi-depth teeth are usually manufactured based on Klingelnberg cyclo-palloid system. In this paper, the tooth contact pattern of large-sized spiral bevel gears in this system are investigated analytically and experimentally. First, the tooth contact pattern and transmission errors of such gears are analyzed. The analysis method is based on simultaneous generations of tooth surface and simulations of meshing and contact. Next, the large-sized spiral bevel gears are manufactured and the tooth contact pattern of these gears is investigated experimentally. Moreover, the real tooth surfaces are measured using a coordinate measuring machine and the tooth flank form errors are detected using the measured coordinates. It is possible to analyze the tooth contact patterns of the spiral bevel gears with consideration of the tooth flank form errors expressing the errors as polynomial equations. Finally, the influence of alignment errors due to assembly on the tooth contact pattern is also investigated analytically and experimentally. These analyzed results were compared with experimental ones. As a result, two results showed a good agreement.


Author(s):  
Claude Gosselin ◽  
Louis Cloutier

Abstract Because of their inherent pseudo-conjugate natures, spiral bevel gears cut by the Gleason method basically transmit motion in a non uniform manner. This motion non uniformity, or motion error, repeated at each tooth engagement and at high speeds and loads, can cause vibrations in transmissions and contact-entry impact loads on gear teeth which affect the life of a gearset. It is customary to make small changes to machine settings in order to produce gear pairs with vastly improved kinematics. Therefore, machine setting changes must be carefully chosen such as to produce appropriate unloaded kinematical motion error that will cancel tooth bending deflection and contact deformation at a given load, and thus reduce noise and vibrations due to motion non-uniformity. This paper presents a study on the effects of machine settings, such as cutter tilt, machine center to back and offset, on the unloaded kinematical motion error. Applying CAD Boolean operations on the results, it is found that, for a given speed ratio, an infinite number of cutter tilt, work offset and machine center to back combinations will produce gear sets with convex parabolic motion error curve of any desired amplitude. Moreover, the amplitude of motion error curves can be linked directly to contact bias on the tooth flank. Thus, gear sets with any parabolic motion error in the unloaded state can be produced, such as to cancel tooth bending deflection and contact deformation in the loaded state.


2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Xiaoyu Sun ◽  
Yongqiang Zhao ◽  
Ming Liu ◽  
Yanping Liu

The mesh model and mesh stiffness representation are the two main factors affecting the calculation method and the results of the dynamic mesh force. Comparative studies considering the two factors are performed to explore appropriate approaches to estimate the dynamic meshing load on each contacting tooth flank of spiral bevel gears. First, a tooth pair mesh model is proposed to better describe the mesh characteristics of individual tooth pairs in contact. The mesh parameters including the mesh vector, transmission error, and mesh stiffness are compared with those of the extensively applied single-point mesh model of a gear pair. Dynamic results from the proposed model indicate that it can reveal a more realistic and pronounced dynamic behavior of each engaged tooth pair. Second, dynamic mesh force calculations from three different approaches are compared to further investigate the effect of mesh stiffness representations. One method uses the mesh stiffness estimated by the commonly used average slope approach, the second method applies the mesh stiffness evaluated by the local slope approach, and the third approach utilizes a quasistatically defined interpolation function indexed by mesh deflection and mesh position.


Author(s):  
X C Zhang ◽  
X Wang ◽  
L J Yu ◽  
Z J Yang

In this article, a new gear generating method for the spiral bevel gear with spherical involutes tooth curves was proposed. It was analysed that the tooth flank with cone-spiral involute surface could be formed by the space trajectory of a straight line. The straight line was named as a tracing line. In the method, three motions were demanded; those were the rotary motion of the workpiece, the rectilinear motion of the end of the tracing line along the dedendum, and the rotary motion of the tracing line in the plane. The motion equations were derived. The plate milling cutter with face cutting edges could be used to machine the spiral bevel gears and the chord line of the face circle worked as the tracing line. By the method, the spiral bevel gears without principle errors whose tooth flanks are exact spherical involute curves that could be achieved.


1993 ◽  
Vol 115 (3) ◽  
pp. 483-489 ◽  
Author(s):  
C. J. Gosselin ◽  
L. Cloutier

Because of their inherent pseudo-conjugate natures, spiral bevel gears cut by the Gleason method basically transmit motion in a nonuniform manner. This motion nonuniformity, or motion error, repeated at each tooth engagement and at high speeds and loads, can cause vibrations in transmissions and contact-entry impact loads on gear teeth which affect the life of a gearset. It is customary to make small changes to machine settings in order to produce gear pairs with vastly improved kinematics. Therefore, machine setting changes must be carefully chosen such as to produce appropriate unloaded kinematical motion error that will cancel tooth bending deflection and contact deformation at a given load, and thus reduce noise and vibrations due to motion nonuniformity. This paper presents a study on the effects of machine settings, such as cutter tilt, machine center to back and offset, on the unloaded kinematical motion error. Applying CAD Boolean operations on the results, it is found that, for a given speed ratio, an infinite number of cutter tilt, work offset and machine center to back combinations will produce gear sets with convex parabolic motion error curve of any desired amplitude. Moreover, the amplitude of motion error curves can be linked directly to contact bias on the tooth flank. Thus, gear sets with any parabolic motion error in the unloaded state can be produced, such as to cancel tooth bending deflection and contact deformation in the loaded state.


Author(s):  
Filip Jerabek ◽  
Gábor Szánti ◽  
Seppo Torvinen

Abstract A method for analyzing single flank test results is proposed. The analysis yields geometrical deviations of spiral bevel gears. It is based on extracting information on the meshing tooth surfaces from the transmission error curve and digital photograph of the contact pattern. A neural network is trained by a batch of computer simulated transmission error curves and respective contact patterns belonging to systematically varied geometrical deviations. Taking advantage of the generalization capability of the neural network, it can be used to yield tooth flank topography errors on the basis of single flank test measuring results. Giving similar results to coordinate measurement, the method extends the capabilities of single flank test significantly. It saves costly coordinate measuring time, which may be especially advantageous in case of large bevel gears. It takes only minor changes for the analysis to be applicable for any types of gears.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Kazumasa Kawasaki ◽  
Isamu Tsuji

Demand for large-sized spiral bevel gears has increased in recent years and a trend expected to continue. The large-sized spiral bevel gears with equi-depth teeth are usually manufactured based on Klingelnberg cyclo-palloid system. In this paper, the tooth contact pattern of large-sized spiral bevel gears in this system are investigated analytically and experimentally. First, the tooth contact pattern and transmission errors of such gears are analyzed. The analysis method is based on simultaneous generations of tooth surface and simulations of meshing and contact. Next, the large-sized spiral bevel gears are manufactured and the tooth contact pattern of these gears is investigated experimentally. Moreover, the real tooth surfaces are measured using a coordinate measuring machine and the tooth flank form errors are detected using the measured coordinates. It is possible to analyze the tooth contact pattern of the spiral bevel gears with consideration of the tooth flank form errors expressing the errors as polynomial equations. Finally, the influence of alignment errors due to assembly on the tooth contact pattern is also investigated analytically and experimentally. These analyzed results were compared with experimental ones. As a result, the two results showed a good agreement.


Sign in / Sign up

Export Citation Format

Share Document