scholarly journals A Study of Adhesion Force Model for Wheel Slip Prevention (Examination by Beam Model)

2004 ◽  
Vol 70 (696) ◽  
pp. 2407-2412 ◽  
Author(s):  
Hiro-o YAMAZAKI ◽  
Masao NAGAI ◽  
Takayoshi KAMADA
2004 ◽  
Vol 47 (2) ◽  
pp. 496-501 ◽  
Author(s):  
Hiro-o YAMAZAKI ◽  
Masao NAGAI ◽  
Takayoshi KAMADA

2013 ◽  
Vol 248 ◽  
pp. 143-152 ◽  
Author(s):  
Tomonari Kobayashi ◽  
Toshitsugu Tanaka ◽  
Naoki Shimada ◽  
Toshihiro Kawaguchi

1993 ◽  
Vol 20 (2) ◽  
pp. 287-298 ◽  
Author(s):  
J. L. Humar ◽  
A. M. Kashif

In spite of a number of analytical and experimental investigations on the dynamic response of bridges to moving vehicle loads, the controlling parameters that govern the response have not been clearly identified. This has, in turn, inhibited the development of rational design procedures. Based on an analytical investigation of the response of a simplified beam model traversed by a moving mass, the present study identifies the governing parameters. The results clearly show why attempts to correlate the response to a single parameter, either the span length or the fundamental frequency, are unsuccessful. Simple design procedures are developed based on relationships between the speed ratio, the weight ratio, and the dynamic amplification factors; and a set of design curves are provided. Key words: dynamic response of bridges, vehicle–bridge interaction, moving force model, moving sprung mass model, dynamic amplification factor.


Author(s):  
Kyosuke Ono ◽  
Satoshi Oohara

This paper deals with the experimental identification of elastic, damping and adhesion forces in the dynamic collision of a spherical slider with a stationary magnetic disk. We used rough Al2O3TiC and smooth glass spherical sliders with a radius of 1 mm, and magnetic disks with four different lubricant film thicknesses of 0, 1, 2, and 3 nm. We found that the Al2O3TiC slider shows ordinary approach and rebound processes, whereas the glass slider showed a velocity drop at the end of the rebound process when the lubricant thickness was 1, 2 and 3 nm. We identified the elastic force factors in the approaching and rebound processes, based on the Herztian contact theory, and the damping force factors based on a damping force model that is proportional to slider velocity and penetration depth (contact area). From the drop in velocity when the slider and disk separated, we found that the dynamic adhesion force is almost equal to the static pull-off force, except for with a 3nm lubricant thickness. The dynamic adhesion force with 3 nm lubricant thickness is significantly higher probably because of squeeze damping effect.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2501 ◽  
Author(s):  
Jinhong Sun ◽  
Xiangdang Xue ◽  
Ka Wai Eric Cheng

With the development of in-wheel technology (IWT), the design of the electric vehicles (EV) is getting much improved. The anti-lock braking system (ABS), which is a safety benchmark for automotive braking, is particularly important. Installing the braking motor at each fixed position of the wheel improves the intelligent control of each wheel. The nonlinear ABS with robustness performance is highly needed during the vehicle’s braking. The anti-lock braking controller (CAB) designed in this paper considered the well-known adhesion force, the resistance force from air and the wheel rolling friction force, which bring the vehicle model closer to the real situation. A sliding mode wheel slip ratio controller (SMWSC) is proposed to yield anti-lock control of wheels with an adaptive sliding surface. The vehicle dynamics model is established and simulated with consideration of different initial braking velocities, different vehicle masses and different road conditions. By comparing the braking effects with various CAB parameters, including stop distance, braking torque and wheel slip ratio, the SMWSC proposed in this paper has superior fast convergence and stability characteristics. Moreover, this SMWSC also has an added road-detection module, which makes the proposed braking controller more intelligent. In addition, the important brain of this proposed ABS controller is the control algorithm, which can be used in all vehicles’ ABS controller design.


Author(s):  
Kyosuke Ono

As an extension of the study presented in ISPS 2016, vibration characteristics of a commercially used head slider in hard disk drives at touchdown are analyzed by using a single degree-of-freedom (DOF) slider model, improved asperity adhesion force model, and air-bearing force model. Using parameter values at the head/disk interface, the total interfacial force was evaluated for various air bearing stiffness ratios r. Microwaviness (MW)-excited slider vibration was simulated near the boundary of instability onset (r = 2.4), and slight instability conditions at r = 2. It was found that the simulated results at r = 2.4 and 2 agree well with the touchdown vibrations of actual slider at ID and MD, respectively. The possibility of surfing recording is discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Bo Zhu ◽  
Weiping Huang ◽  
Zhenwen Sun ◽  
Xinglong Yao ◽  
Juan Liu

The catenary riser such as steel catenary riser (SCR), under wave action or current action, shows a kind of rotation that acts as a rigid body along a similarly fixed axis of oscillation determined by the varying suspension and touch down point, respectively. The characteristics of acceleration of catenary riser influenced by rigid body swing integrity backwards and forwards (RBSIBF) in cross direction cannot be neglected. Based on the large deflection slender beam model, top motion of x direction, RBSIBF, and wave force model, this manuscript studies and explains effect of RBSIBF in cross direction (z direction) on riser in quantitative and qualitative perspectives. The rigid body wiggle effect can be considered by amplitude-value multiplication with the safety factor of 1.2. The calculation shows that, in terms of the overall motion pattern, the motion response in the xy plane develops gradually from the narrow amplitude wiggle in in-line direction of top region to narrow amplitude wiggle in vertical direction of bottom area. Wave load is the main effect load in cross-flow direction. Along the depth increase, the acceleration amplitude of the top hanging point area is maximum, and the amplitude decreases most strongly or violently. With the decrease of case amplitude, the structural acceleration responses of node 10th to 80th significantly reduced by about 30% and the corresponding of node 140th to 200th increased by about 15%. The most influential point of RBSIBF on acceleration is node 200th with an influence level of about 20%. When the structure mainly rotates in the xz plane, rigid body wiggle and swing are positively correlated with rotation vector diameter. The rigid body wiggle and swing increase acceleration of structure. In the rotational yz plane of the structure, rigid body wiggle and swing reduce acceleration response.


2010 ◽  
Vol 154-155 ◽  
pp. 1157-1164 ◽  
Author(s):  
Jinn Jong Sheu ◽  
Dong Mei Xu ◽  
Chin Wei Liu

The dimension accuracy and the too life are the major issues of the machining of hard-to-cut materials. To fulfill the requirements of accuracy and tool life needs not only well planning of cutting path but also the proper cutting conditions of cutters. The vibration and deflection of cutters caused by poor selection of cutting conditions can be predicted using models of cutting force and tool deflection. In this paper, a cutting force model considering the effect of tool helical angle and a cantilever beam model of tool deflection were proposed for the high speed machining of hard-to-cut material SKD11. The shearing force, the plowing forces, and the helical angle of cutters are considered in the elemental force model. The material of workpiece, SKD11, studied in this paper is commonly used for the die and mold industries. The cutting constants of the proposed force model are determined via the cutting experiments carried out on a high speed machining center. A dynamometer and a high frequency data acquisition system were used to measure the x-, y-, and z-direction cutting forces. The obtained cutting constants were used to predict the cutting forces and compared with the results obtained from the cutting experiment of verification using cutters with different helical angles. The theoretical and the experimental cutting forces in the x-, y-, and z- direction are in good agreement using flat cutters with 30 and 45 degrees of helical angle. The dimension deviations of the cut surface in the cutting experiment case of tool deflection were measured using a touch probe and an infrared receiver installed on the machining center. The measured average dimension deviation, 0.163mm, is close to the predicted tool deflection, 0.153mm, using the proposed cantilever beam model. The comparisons of the cutting forces and the average of the cut surface dimension deviation are in good agreement and verify the proposed cutting force and the tool deflection models are feasible and useful.


2005 ◽  
Vol 127 (2) ◽  
pp. 365-375 ◽  
Author(s):  
Kyosuke Ono ◽  
Satoshi Ohara

This paper deals with the experimental identification of elastic, damping and adhesion forces in the dynamic collision of a spherical slider with a stationary magnetic disk. We used rough Al2O3TiC and smooth glass spherical sliders with a radius of 1 mm, and magnetic disks with four different lubricant film thicknesses of 0, 1, 2, and 3 nm. We found that the Al2O3TiC slider shows ordinary approach and rebound processes, whereas the glass slider showed a velocity drop at the end of the rebound process when the lubricant thickness was 1, 2, and 3 nm. We identified the elastic force factors in the approach and rebound processes, based on Herztian contact theory, and the damping force factors based on a damping force model that is proportional to slider velocity and penetration depth (contact area). From the drop in velocity when the slider and disk separated, we found that the dynamic adhesion force is almost equal to the static pull-off force except for with a 3 nm lubricant thickness. The dynamic adhesion force with a 3 nm lubricant thickness is significantly higher, probably because of squeeze damping effect.


Sign in / Sign up

Export Citation Format

Share Document