scholarly journals Effects of Fire on Hypogeous Fungi, Spore Dispersal and Dependent Flora Establishment in Soils

Author(s):  
Steven Miller ◽  
Nancy Stanton ◽  
Stephen Williams

In our initial survey of dispersal of spores into areas disturbed by the 1988 Huckleberry burn, in the John D. Rockefeller Memorial Parkway, we focused on small mammal dispersal of hypogeous ectomycorrhizal fungi which had been touted as a primary means of dispersal (Trappe and Maser 1977, Ure and Maser 1982), and the recruitment and physiognomy of conifer seedlings germinating in the burned areas. Interestingly, the small mammals captured at the Huck burn sites were feeding on both epigeous and hypogeous, as well as, mycorrhizal and non-mycorrhizal fungi. The seedlings that had germinated in the burned areas were non-mycorrhizal until late in the season. These results are somewhat contradictory to hypotheses offered in the literature. For these reasons, additional objectives, such as including both hypogeous and epigeous ectomycorrhizal fungi, were established to examine the process of ectomycorrhizal colonization more closely.

2014 ◽  
Vol 10 ◽  
pp. 89-95 ◽  
Author(s):  
Małgorzata Połatyńska

Fungi serve as a food source for a wide variety of animals. Among mammals, most species feed on fungi occasionally or accidentally while foraging for other type of food, but some species are frequent mycophags and fungi can be a dominant component of their diet. Examples of mycophags can be found among marsupials: wallabies and bettongs; and rodents: squirrels, chipmunks, voles and mice. Hypogeous fungi produce closed, underground sporocarps without opening mechanisms, and thus are unable to release their spores into the air. In case of those fungi, animals feeding on sporocarps and spreading spores in their faeces are considered to be the main vector of spore dispersal. Animals that frequently feed on fungi and other heavy digestible food have developed morphological adaptations such as longer gut retention and a spiral construction of the proximal colon, to digest more fungal material which is rich in nitrogen. The spores stay viable after passing through the animal gut, and in some cases their ability to germinate and form mycorrhiza is enhanced after leaving the intestine. Hypogeous fungi are mycorrhizal partners for plants and it is therefore possible that the interactions between mycorrhizal fungi and animals spreading their spores also play an important role in ecosystem functioning.


2010 ◽  
Vol 40 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Sandra Gladish ◽  
Jonathan Frank ◽  
Darlene Southworth

Serpentine soils select for unique plant communities, often with sparse vegetation. Mycorrhizal fungi mediate the interaction between plants and soils, yet little is known about the mycorrhizal fungi of serpentine-tolerant plants. Ectomycorrhizas and hypogeous fungal sporocarps were sampled on paired serpentine and nonserpentine soils in southwestern Oregon. We hypothesized that conifers on serpentine soils would have fewer species of mycorrhizal fungi, a distinct assemblage of ectomycorrhizal fungi, and fewer hypogeous sporocarps with less species richness. Sporocarps were sampled and soil cores collected around pines on serpentine and nonserpentine soils. Conifers on serpentine and nonserpentine soils hosted overlapping communities of ectomycorrhizal fungi, as characterized by nonmetric multidimensional scaling. From soil cores, we categorized 27 species by morphotype, of which 18 were identified by DNA. Fewer hypogeous sporocarps with less taxonomic richness were collected on serpentine soils. The lack of indicator species of mycorrhizal fungi and the greater variability among samples on serpentine soils suggest that soil composition does not determine the mycorrhizal community. The sparseness of host vegetation may limit the ability of fungi to grow from tree to tree and may increase the reliance on spore dispersal, thus creating a more varied pattern of mycorrhizal communities.


Author(s):  
Steven Miller ◽  
Nancy Stanton ◽  
Stephen Williams

Movement of ectomycorrhizal fungal propagules by small mammals into burned areas of the Huck fire, John D. Rockefeller Memorial Parkway, was monitored for a third field season by live-trapping small mammals in burned and unburned forest sites and examining spores contained in their fecal pellets. As in the first two years, three species of small mammals were commonly trapped including the white-footed deermouse (Peromyscus maniculatus), least chipmunk (Tamias minimus) and southern red-backed vole (Clethrionomys gapperi).


2011 ◽  
Vol 6 (3) ◽  
pp. 446-456 ◽  
Author(s):  
Marija Kataržytė ◽  
Ernestas Kutorga

AbstractThe diets of small mammals in different hemiboreal spruce-dominated, oak-dominated and mixed forests in western part of Lithuania were studied by examination of fungal spores in fresh fecal pellets of caught animals. In the diets of mice (Apodemus spp.), bank voles (Myodes glareolus), and common and pygmy shrews (Sorex araneus and S. minutus), 22 different fungal taxa were identified, 15 of which were hypogeous fungi. The sporocarp abundance and the spores in fecal samples of Elaphomyces fungi prevailed in study area during this investigation. Although most of the captured individuals consumed fungi, the consumption varied among small mammal species. The data show that the fungi were more frequent and taxonomically diverse in Myodes glareolus than in Apodemus spp. diets. The study provided evidence that the fungal component in the diets of insectivorous Sorex species is more diverse than previously known. The availability of sporocarps and the fungal component in the diets of small mammals showed seasonal effects. Annual hypogeous and epigeous sporocarp abundances did not vary significantly across forest types. The significant difference in mycophagy was observed across all forest cover types, with the greatest fungal diversity in fecal samples collected in mixed coniferous-deciduous tree stands.


Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nayara Yoshie Sano ◽  
Heitor Miraglia Herrera ◽  
Grasiela Edith de Oliveira Porfirio ◽  
Filipe Martins Santos

AbstractTo date, there have been no studies that have evaluated small mammal utilization of the understory of forests. In this study, we described the use of vertical strata by small mammals in patches of unflooded forests, known as “cordilheiras”, in the Nhecolândia sub-region of the Pantanal, Brazil. We collected all species using the ground and understory, including the terrestrial didelphid Monodelphis domestica. We suppose that local habitat features (e.g., Acuri palms), rather than intrinsic species characteristics, may be more conducive to the use of understory vegetation by small mammals in the Nhecolândia region.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 346
Author(s):  
Linas Balčiauskas ◽  
Laima Balčiauskienė ◽  
Andrius Garbaras ◽  
Vitalijus Stirkė

The stability of diversity of syntopic (inhabiting the same habitat in the same time) small mammals in commensal habitats, such as farmsteads and kitchen gardens, and, as a proxy of their diet, their isotopic niches, was investigated in Lithuania in 2019–2020. We tested whether the separation of species corresponds to the trophic guilds, whether their diets are related to possibilities of getting additional food from humans, and whether their diets are subject to seasonal trends. We analyzed diversity, dominance and distribution of hair δ13C and δ15N values. Diversity and dominance was not stable and differed according to human influence. The highest small mammal species richness occurred in commensal habitats that provided additional food. The degree of separation of species was higher in homestead habitats than in kitchen gardens, where a 1.27 to 35.97% overlap of isotopic niches was observed between pairs of species. Temporal changes in δ13C and δ15N values in the hair of the mammals were not equally expressed in different species. The isotopic overlap may depend on dietary plasticity, minimizing interspecific competition and allowing co-existence of syntopic species. Thus, small mammal trophic ecology is likely related to intensity of agricultural activities in the limited space of commensal habitats.


2021 ◽  
pp. 175815592110660
Author(s):  
Jenő J Purger ◽  
Dávid Szép

The relative abundance of small mammal species detected from Common Barn-owl pellets reflects the landscape structure and habitat pattern of the owl’s hunting area, but it is also affected by the size of the collected pellet sample and the size of the supposed hunting area. The questions arise: how many pellets should be collected and analyzed as well as how large hunting area should be taken into consideration in order to reach the best correspondence between the owl’s prey composition and the distribution of habitats preferred by small mammals preyed in supposed hunting areas? For this study, we collected 1045 Common Barn-owl pellets in a village in southern Hungary. All detected small mammal species were classified into functional groups (guilds) preferring urban, open, forest and wetland habitats. The proportion of functional groups was compared to the proportion of these habitats around the pellet collection site within circles of one, two, and three km radius. Saturation curves showed that at least 300 pellets or ca. 600 mammalian remains are required for the detection of the 19 small mammal species. The share of small mammals detected in the prey and their functional groups according to their habitat preference showed an increasing consistency with the distribution of real habitats in the potential hunting area of a radius of 3 km around the owl’s breeding or resting place.


1983 ◽  
Vol 61 (5) ◽  
pp. 970-980 ◽  
Author(s):  
Arthur M. Martell

Changes in small mammal communities following logging were monitored in clear-cut and strip-cut upland black spruce (Picea mariana) stands and in selectively cut mixed wood stands in north-central Ontario. Clear-cutting and subsequent scarification essentially eliminated the vegetative cover. Much of the ground cover recovered within 5 years and shrubs within 12 years, but mosses and lichens took much longer. The small mammal community in both clear-cut and strip-cut stands changed over the first three years after logging from one dominated by southern red-backed voles (Clethrionomys gapperi) to one dominated by deer mice (Peromyscus maniculatus) and then remained relatively stable for up to 13 years after harvest. That shift was not apparent in selectively cut mixed wood stands where the composition of the small mammal community was similar between uncut stands and stands 4–23 years after harvest. There was relatively little change in total numbers of small mammals after logging. In general, the diversity and evenness of small mammals increased or remained stable in the first 1–3 years following harvest, decreased on older (3–16 years) cuts, and then increased to values similar to those in uncut stands on the oldest (19–23 years) cuts.


1982 ◽  
Vol 47 (4) ◽  
pp. 822-829 ◽  
Author(s):  
Peter W. Stahl

Analysis of the dissected remains of certain small mammals suggests a consistently high ratio of edible meat to live weight. These figures, together with the great abundance of small mammals in natural and culturally modified settings, are combined to support the argument that they may have been important elements in prehistoric diet. Their dietary status may be consistently underestimated because of a number of biases.


2011 ◽  
Vol 89 (12) ◽  
pp. 1214-1222 ◽  
Author(s):  
Ashley A.D. McLaren ◽  
Lenore Fahrig ◽  
Nigel Waltho

Previous studies suggest the gap in forest cover generated by roads contributes to the barrier effect of roads on movement of forest-dwelling small mammals. However, it is not known if vegetated medians of divided highways affect movement of small mammals by reducing the effective highway width. The purpose of our study was to determine whether the type of vegetation cover in the median (treed or grassy) or median width affects small-mammal crossings of divided highways. At 11 study sites varying in median cover type and width, we live-trapped small mammals next to one side of the highway and translocated them to the opposite side of the highway using a standardized translocation distance. In total, 24% of translocated individuals were recaptured on the side of the highway of initial capture, i.e., they had moved across the entire highway. This was significantly lower than what would have been expected in the absence of the highway (58%). The overall probability of recapturing a translocated individual was not significantly related to median cover type or width. Our results suggest that efforts to mitigate the barrier effect of highways on small mammals cannot be accomplished by altering median vegetation type and width.


Sign in / Sign up

Export Citation Format

Share Document