scholarly journals Effects of Large-Scale Fire on Plant Regneration on Subalpine Plateaus in Yellowstone National Park

Author(s):  
William Romme ◽  
Monica Turner ◽  
Robert Gardner ◽  
William Hargrove

The scale of the 1988 fires in Yellowstone National Park (YNP) raised numerous questions for the management of natural areas subject to large but infrequent natural disturbances. The central question that we have addressed in our postfire studies is whether the effects of large-scale fires, such as those in 1988, differ qualitatively as well as quantitatively from effects of smaller fires. The answer to this question has important implications for our understanding of the evolution of natural systems and for management of future disturbances in places like YNP (Christensen et al. 1989). We approached this question on Yellowstone's extensive subalpine plateaus by comparing patterns of plant regeneration in large vs. small fire-generated patches after the 1988 fires. This research complements our work in northern YNP that focused on the landscape-level interactions among ungulates, vegetation, and fire, and was published in the UW-NPS Report for 1992 (Turner et al. 1992). Recent research into the mechanisms of plant succession following fire or other disturbances has demonstrated that species responses may vary with different kinds and severities of disturbance and with the larger spatial and temporal context of the disturbance. For example, Rowe (1983) describes several species of ·boreal plants that resprout from surviving belowground structures after low-severity fires and dominate early successional stages; these same species are killed by severe fires and replaced by other species having greater dispersal abilities (also see Miller 1982, Malanson 1984, and Halpern 1989). The scale and heterogeneity of the 1988 yellowstone fires provide an exceptional opportunity to evaluate the relative importance of the size and spatial patterning of fire-created patches for reestabishment of plant species representing different modes of reproduction.

Author(s):  
Evelyn Merrill ◽  
Cathy Wilson ◽  
Ronald Marrs

Traditional methods for measurement of vegetative biomass can be time-consuming and labor­intensive, especially across large areas. Yet such estimates are necessary to investigate the effects of large scale disturbances on ecosystem components and processes. One alternative to traditional methods for monitoring rangeland vegetation is to use satellite imagery. Because foliage of plants differentially absorbs and reflects energy within the electromagnetic spectrum, remote sensing of spectral data can be used to quantify the amount of green vegetative biomass present in an area (Tucker and Sellers 1986).


Author(s):  
Monica Turner ◽  
Robert Gardner ◽  
William Romme

The 1988 fires that burned in Yellowstone National Park presented ecologists with a unique opportunity to investigate ecological responses to large-scale fires (Christensen et al. 1989, Knight and Wallace 1989). The Yellowstone fires created an extremely heterogeneous landscape in terms of both the overall burning patterns and the variable fire severity within burned areas. Large fires rarely consume the entire forest because of the influence of wind variations, topography, vegetation type, natural fire breaks, and the time of day that the fire passed through (Rowe and Scotter 1973, Wright and Heinselman 1973, Van Wagner 1983). Direct fire effects such as tree mortality and organic matter consumption are related to locally variable parameters such as moisture content (Brown et al. 1985, Peterson and Ryan 1986, Ryan et al. 1988), and fire severity and return intervals are often strongly influenced by topographic and edaphic variability (Habeck and Mutch 1973, Romme and Knight 1981, Hemstrom and Franklin 1982, Whitney 1986). Therefore, burned landscapes generally contain areas of low as well as high intensity fire, usually in a complex mosaic (Van Wagner 1983). These variable fire intensities result in a heterogeneous pattern of burn severities (effects of fire on the ecosystem), as well as islands of unburned vegetation. The influence of burn severity on plant reestablishment following fire is well documented (e.g., Lyon and Stickney 1976, Rowe and Scotter 1973, Viereck 1983, Ryan and Noste 1985), and the importance of the effects of limited burns and low-intensity fires on the vegetation mosaic has been recognized (Habeck and Mutch 1973, Rowe 1983). However, few studies have dealt explicitly with the spatial variation of fire effects in a systematic and quantitative way.


Author(s):  
Monica Turner ◽  
Yegang Wu ◽  
William Romme ◽  
Linda Wallace

The scale of the 1988 fires in Yellowstone National Park (YNP) raised numerous questions for the management of natural areas subject to large, infrequent disturbances. An important management issue in YNP involves the interaction of large-scale fire with the large assemblage of native ungulates and vegetation dynamics in the landscape. In this 2-year research project, we are using landscape modeling and field studies to address basic questions about the effects of fire scale and heterogeneity on (1) resource utilization and survival of free-ranging elk (Cervus elaphus) and bison (Bison bison) and (2) the production and regeneration of preferred forage grasses and aspen in northern YNP. We are testing a series of eight hypotheses within the framework of two basic questions. First, we ask whether there are thresholds in fire size that interact with winter severity and ungulate density to determine ungulate resource use and survival on the winter range in northern YNP. This question focuses on the effects of fire size, regardless of the spatial pattern of burning. Second we ask, if large fires occur, does the spatial distribution of burned areas (and hence of higher quality forage) influence ungulate resource use during winters subsequent to the first post-fire year. In this question, we are addressing the effects of spatial pattern on herbivory. We focus on elk and bison because these are by far the most numerous ungulates in the area (Houston 1982), and we have chosen to examine winter grazing and browsing for several reasons. Winter range conditions are the primary determinant of ungulate survival and reproduction in Yellowstone, and winter utilization of the vegetation by ungulates appears to be intense in some areas. Ungulates make distinct foraging choices in the winter as in the rest of the year, and burn patterns may influence those choices in ways that we represent as hypotheses described later. In addition, the activities of animals can be readily monitored in the winter, and the exact locations of feeding and bedding sites can be determined. Travel routes are easily monitored, and the ability to sight animals is high; therefore, group locations and sizes can be readily determined. This research complements ongoing studies in YNP by expanding the spatial scale at which plant-herbivore dynamics are considered and by explicitly addressing the effects of spatial heterogeneity. Our research will produce a spatially explicit simulation model of the 78,000 ha winter range that predicts plant and ungulate dynamics under varying fire sizes, fire patterns, winter weather scenarios, and ungulate densities. The model and field studies will allow quantitative comparisons of the effects of large and small fires on ungulate survival and will thereby permit the simulation of the effects of alternative fire management scenarios.


Author(s):  
H. Wright, Jr.

The problem posed concerns the relative importance of climate, fire, hillslope erosion induced by overgrazing, and nutrient enrichment as recorded in selected lakes in the Northern Range of Yellowstone National Park especially during the last 150 years, when populations of elk are known to have fluctuated greatly, and when slight climatic changes are suggested from other lines of research.


Author(s):  
H. Wright, Jr.

The problem posed concerns the relative importance of climate, fire, hillslope erosion induced by overgrazing, and nutrient enrichment as recorded in selected lakes in the Northern Range of Yellowstone National Park especially during the last 150 years, When populations of elk are known to have fluctuated greatly, and when slight climatic changes are suggested from other lines of research.


Author(s):  
Monica Turner ◽  
Yegang Wu ◽  
Scott Pearson ◽  
William Romme ◽  
Linda Wallace

The scale of the 1988 fires in Yellowstone National Park (YNP) raised numerous questions for the management of natural areas subject to large, infrequent disturbances. An important management issue in YNP involves the interaction of large-scale fire with the large assemblage of native ungulates and vegetation dynamics in the landscape. We used landscape modeling and field studies to address basic questions about the effects of fire scale and heterogeneity on resource utilization and survival of free-ranging elk (Cervus elaphus) and bison (Bison bison), and the production and regeneration of preferred forage grasses and aspen in northern Yellowstone Park. More specifically, we asked (1) how fire size interacts with winter severity to control ungulate feeding behavior and survival, both in the initial postfire winter, when fire reduces forage, and in later postfire winters, when fire augments forage; (2) how fire pattern (e.g., clumped vs. dispersed burn sites) modifies the effects of fire size; (3) which environmental factors, including fire, influence selection of feeding areas by wintering ungulates at a variety of scales, from a single feeding station to the entire northern winter range; and (4) how the size and spatial pattern of burning influence regeneration of aspen (Populus tremuloides), a preferred and heavily browsed species in YNP. We focus on elk and bison because these are by far the most numerous ungulates in the area (Houston 1982), and we have chosen to examine winter grazing and browsing for several reasons. Winter range conditions are the primary determinant of ungulate survival and reproduction in Yellowstone, and winter utilization of the vegetation by ungulates appears to be intense in some areas. Ungulates make distinct foraging choices in the winter as in the rest of the year, and burn patterns may influence those choices in ways that we represent as hypotheses described later. In addition, the activities of animals can be readily monitored in the winter, and the exact locations of feeding and bedding sites can be determined. Travel routes are easily monitored, and the ability to sight animals is high; therefore, group locations and sizes can be readily determined. This research complements ongoing studies in Yellowstone by expanding the spatial scale at which plant-herbivore dynamics are considered and by explicitly addressing the effects of spatial heterogeneity. We produced a spatially explicit simulation model of the winter range that predicts plant and ungulate dynamics under varying fire sizes, fire patterns, winter weather scenarios. The model and field studies will generate quantitative comparisons of the effects of large and small fires on ungulate survival and will thereby permit the simulation of the effects of alternative fire management scenarios.


2011 ◽  
Author(s):  
Michael S. Zhdanov ◽  
Robert B. Smith ◽  
Alexander V. Gribenko ◽  
Martin Čuma ◽  
A. Marie Green

2017 ◽  
Vol 284 (1863) ◽  
pp. 20170894 ◽  
Author(s):  
Zhiwei Zhong ◽  
Xiaofei Li ◽  
Dean Pearson ◽  
Deli Wang ◽  
Dirk Sanders ◽  
...  

Trophic interactions and ecosystem engineering are ubiquitous and powerful forces structuring ecosystems, yet how these processes interact to shape natural systems is poorly understood. Moreover, trophic effects can be driven by both density- and trait-mediated interactions. Microcosm studies demonstrate that trait-mediated interactions may be as strong as density-mediated interactions, but the relative importance of these pathways at natural spatial and temporal scales is underexplored. Here, we integrate large-scale field experiments and microcosms to examine the effects of ecosystem engineering on trophic interactions while also exploring how ecological scale influences density- and trait-mediated interaction pathways. We demonstrate that (i) ecosystem engineering can shift the balance between top-down and bottom-up interactions, (ii) such effects can be driven by cryptic trait-mediated interactions, and (iii) the relative importance of density- versus trait-mediated interaction pathways can be scale dependent. Our findings reveal the complex interplay between ecosystem engineering, trophic interactions, and ecological scale in structuring natural systems.


Author(s):  
Evelyn Merrill ◽  
Ronald Marrs

Traditional methods for measurement of vegetative characteristics can be time-consuming and labor-intensive, especially across large areas. Yet such estimates are necessary to investigate the effects of large scale disturbances on ecosystem components and processes. Because foliage of plants differentially absorbs and reflects energy within the electromagnetic spectrum, one alternative for monitoring vegetation is to use remotely sensed spectral data (Tueller 1989). Spectral indices developed from field radiometric and Landsat data have been used successfully to quantify green leaf area, biomass, and total yields in relatively homogeneous fields for agronomic uses (Shibayama and Akiyama 1989), but have met with variable success in wildland situations (Pearson et aL 1976). Interference from soils (Hardinsky et al. 1984, Huete et al. 1985), weathered litter (Huete and Jackson 1987), and senesced vegetation (Sellers 1985) have diminished the relationship between green vegetation characteristics and various vegetation indices. In 1987, we found that a linear combination of Landsat Multi-spectral Scanner (MSS) band 7 and the ratio of MSS bands 6 to 4 explained 63% of the variation in green herbaceous phytomass (GHP) in sagebrush-grasslands on ungulate summer range in the northeastern portion of Yellowstone National Park (Merrill et al. 1993). The extensive fires that occurred in the Park in the summer of 1988 provided an opportunity to determine whether remote sensing could be used to estimate green phytomass in burned areas and to monitor grassland vegetation recovery in the Park after the fires. Remote sensing has previously been used to follow succession of seral stages in pine forests (Jakubauskas et al. 1990) after burning and to monitor plant cover in tundra (Hall et al. 1980) after wildfires. The objectives of our study were to: (1) develop a model for predicting GHP in sagebrush­ grassland communities using Landsat TM spectral information and field data on GHP for 2 years, (2) validate the model by comparing predictions made from the model to actual field data collected in a third year, and if successful (3) compare initial vegetation recovery in burned areas relative to unburned sagebrush-grassland.


Sign in / Sign up

Export Citation Format

Share Document